o

NASA TN D-1092

TECHNICAL NOTE
D—1092

AN INPUT ROUTINE USING ARITHMETIC STATEMENTS
FOR THE IBM 704 DIGITAL COMPUTER
By Don N, Turner and Vearl N. Huff

L.ewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
W ASHINGTON September 1961




NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1092

AN INPUT ROUTINE USING ARITHMETIC STATEMENTS FOR THE IBM
704 DIGITAL COMPUTER

By Don N. Turner and Vearl N. Huff

SUMMARY

An input routine has been designed for use with FORTRAN or SAP
coded programs which are to be executed on an IBM 704 digital computer.
All input to be processed by the routine is punched on IBM cards as .- -
declarative statements of the arithmetic type resembling the FORTRAN
language.

The routine is 850 words in length. It is capable of loading
fixed- or floating-point numbers, octal numbers, and alphabetic words,

and of performing simple arithmetic as indicated on input cards. Provi-“zﬁ

sions have been made for rapid loading of arrays of numbers in consecu-
tive memory locations.

INTRODUCTION

The need for a method of reading input data different from that
made available by compilers such as FORTRAN has been indicated by many
problems coded at the Lewis Research Center. Most compilers now in
operation require that the programmer itemize each input parameter in a
read-type statement somewhere in the coding of the problem. While this
procedure is often adequate, additional flexibility is desirable, espe-
cially concerning the order and quantity of values that may be read as
well as the language in which they are presented - such as decimal,
octal, or alphabetic data.

From a study of the features deemed desirable for a flexible iﬁput

routine, it was decided that such a routine should have the following
capabilities:

(1) To load decimal, octal, or alphabetic data into the machine
memory where both the data and the location or destination are taken
from statements on the input medium.

(2) To provide a means of operating on data through Simple arith-
metic, such as conversion of units.



!

{
X
J

(3) To accept an algebraic form of input that is independent of
card format and easily understood.

(4) To provide an effective diagnosis of any errors detected by the
machine in the input statements.

The INPUT routine described herein was subsequently designed for
use on an IBM 704 digital computer that utilizes cards as the input
medium. The logical structure of this routine is adaptable to other
machines whether they utilize cards, paper tape, magnetic tape, or type-
writer input.

GENERAL DESCRTPTION

The INPUT routine is 850 words in length and is coded in the SAP

_ ~language. It is constructed as a subroutine of the type described in

the IBM FORTRAN II manual (International Business Machines form
(28-6000)); that is, it uses the standard subroutine linkage and is

loaded by the Binary Symbolic Subroutine (BSS) loader associated with
FORTRAN.

The INPUT routine, as presented, has been designed for use with
the MONITOR system in use on the 704 computer at the ILewls Research
Center. Thig MONITOR is used to facilitate the handling of program
decks, to keep accounting records, and to decrease the idle machine time
between jobs. In the MONITOR system of operation, all input 1s read
from logical tape 7 (a card-to-tape converter is assumed) and all out-
put is written on logical tape 6 (an auxiliary tape-to-printer is
assumed). The INPUT routine may be easily adapted for use with differ-
ent monitors or other systems.

The object of the INPUT routine is to make possible the transmis-
sion of data to the computer in the form of algebraic statements, such
as

TEMPERATURE = 201.7

This form resembles that of the FORTRAN language and is readily under-
stood and easily checked for errors. The function of the INPUT rou-
tine, then, is to relate the name TEMPERATURE to a specific memory
address and to place the value 201.7 in that location. To accomplish
this, the following steps are performed:

(1) Transfer control to the INPUT routine.

(2) Check to see if data should be read at this time.

(3) Relate the input data name to a specific memory address.




1B

‘Eli08s

SUMMARY . . . . . . . .
INTRODUCTION. . . . .« . . . .
GENERAL DESCRIPTION . . .

ENTERING THE ROUTINE. . . . .
CALL Statement.
Argument 1.
Argument 2. . .
Argument 3.

TYPES OF INPUT STATEMENTS .
$DATA Statement . e e .
$TABLE Statement. . . . . . .
Loading Statement .

Numeric values.
Octal values. . . . . . .
Alphabetic values .

Internally addressed values .

Arithmetic expressions.

CONTENTS

Continuation of loading statement e e .

$¢$ Comment Statement.

DIAGNOSIS OF ERRORS ON INPUT CARDS. . . . . . .

EXAMPLE .

REMARKS .

APPENDIXES.

A - LOGICAL STRUCTURE OF INPUT ROUTINE. . . . .

ERROR DIAGNOSTICS .
- STORAGE ALLOCATION. .
LISTING OF INPUT ROUTINE.

HOQWE
1

- ILLUSTRATION OF VARIABLE NAMES IN TABIE .

Page

0o

W WO W

OO DOO~NI~T00 U ™

10

11

13

14
18
19
21
22






(4) Convert the data value to the required form.
(5) Store the data value in its assigned location.

(6) Repeat steps (3), (4), and (5) until the data of that data
group are exhausted.

(7) Return control to the calling program.

The details of the logical structure of the routine to accomplish
these steps are presented in appendix A in the form of definitions.
Appendixes B to E give, respectively, an illustration of the variable
names in the table, error diagnostics, storage allocation, and the
listing of the input routine.

ENTERING THE ROUTINE

The following discussion explains how to call (i.e., code the
entry to) the INPUT routine.

CALL Statement

The standard CALL statement of FORTRAN II is used to transfer con-
trol to the INPUT routine. Three pieces of information are required as
arguments in the calling sequence.

FORTRAN SAP
CALL INPUT (589, X, TABLE) TSX INPUT, 4
HTR CON589
HTR X
HTR TABLE

These are examples of calling sequences in FORTRAN IT and SAP. In
either system the arguments 589, X, and TABLE are necessary for proper
reading of data. After execution of the INPUT routine, control is
returned to the statement following the calling sequence. A careful
examination of each of the three arguments of the calling sequence will
explain their function in the reading of data.

Argument 1. - The number 589 serves as identification of a data
group. This value is compared with an identification number occurring
on an input card. If these values agree, the processing of data is
initiated and continues until another data identification card is
encountered. If these values do not agree, no data are processed and
control is returned to the calling program where normal program execu-
tion continues until the next input calling sequence is encountered.
Argument 1 may be either a fixed-point number or a fixed-point variable.

Argument 2. - The location of X serves as a reference point for
the storing of input data. Inasmuch as all data to be processed will



be stored relative to the memory location of X, the programmer is expected

to provide fixed relations between the location of X and other locations .
to be loaded. In the FORTRAN language, these relative assignments are
accomplished by use of COMMON or EQUIVALENCE statements or by relying on

the order given automatically by FORTRAN. In any case, the INPUT rou-

tine assumes that serial memory locations will be arranged from larger

to smaller absolute addresses; this is the way FORTRAN stores an array.

, Argument 3. - The address of TABLE locates the first member of an
array to be constructed and used by the INPUT routine. This array will
contain the names of variables that are to be used on the cards and
their memory location relative to X. Sufficient space in memory must
be reserved for storing the table of names. If the program is written
in FORTRAN, this is done by means of a DIMENSION statement. The names
assigned by the user are stored six alphabetic characters per word. The
last word may contain less than six characters and is filled out with
zeros. The length of the array can be determined precisely by adding
the locations required to store each name plus one location per name for
a code number plus one location for a final zero entry that terminates

the table. The information for the construction of the table is sup-
rlied via input cards.

TYPES OF INPUT STATEMENTS

The remainder of the report is devoted to a discussion of the input
statements to be punched on cards. There are four basic types of state-
ments, namely; (1) data group identifiers, (2) table statements,

(3) loading statements, and (4) comments statements which this input
routine is capable of processing. In the following paragraphs a dis-
cussion of each of these types is given along with examples of their
use. In general, the statement is punched on an IBM card using the
card from left to right and ending in column 72, assuming the card
reader board is wired to read columns 1 to 72. Blanks are always
ignored (except for ALF type dsta to be mentioned later).

$DATA Statement

The $DATA statement is a data group identifier. It specifies the
group ldentification number associated with a particular group of input

data. It always precedes a data group and must be the first statement
on a card. For example,

$DATA = 589 card 1 )
on the first card of a data group will cause the value 589 to be com-
pared with the first argument of the calling sequence. If they are
unequal, tape 7 will backspace one record (the equivalent of one card),
and control will be returned to the calling or object program. It is



m=LUGO

assumed that a calling sequence with this identification number will be
forthcoming. If the value on the $DATA card equals the value of the
first argument of the CALL statement, the routine will load data until
another $DATA statement is encountered. Tape 7 is then backspaced one
record to leave the new $DATA statement ready to be read, and control
is returned to the calling program. The $DATA statement, then, serves
to initiate the processing of data and to transfer control to the call-
ing program at the end of the data group.

Whether data are loaded or not, the value of the identification
on the $DATA card present when the routine is called is stored in the
decrement of absolute location 77463. This is the last erasable store
and is accessible to FORTRAN .programs as I(0) if I 1is the first
array in COMMON. This number may be used by the programmer for logical
control of the INPUT subroutine.

$TABIE Statement

The object of $TABLE statements is to make a table of names. In
typical use, this table of names is initially empty, and the names to
be used on subsequent cards are entered by processing $TABIE statements.
The statement begins with the word $TABILE; this is followed by a comma,
then the table information, and is terminated with the slash character.

Consider, for example, that the variable names VELOCITY, MASS, and
RADIUS are to be assigned to memory locations in the array designated
by X, the second argument of the calling sequence, as X(1), X(2), and
X(3), respectively. The card would be punched

$TABLE, 1 = VELOCITY, 2 = MASS, 3 = RADIUS/ card 2

After card 2 is processed, the names VELOCITY, MASS, and RADIUS
are in the table and can be used in subsequent loading statements.
Their locations as the first, second, and third members of the array X
are also in the table. No limit is placed on the length of a name, and
it may begin with any alphabetic letter. If the name is to be asso-
ciated with fixed-point data, which are considered to be less frequent,
a decimal point 1s included with the location. For example, the
statement

$TABLE, 20. = INDEX, 21. = SUBSCRIPT, 22. = I / " card 3

will place these names in the table and label them as fixed point. Any
value subsequently loaded into INDEX, SUBSCRIPT, and I will be placed
in the decrement part as an integer. The numbers will be stored in

the 20th, 21st, ana 22nd subscript positions of the array X. Appendix
B contains a sample of the array TABLE to illustrate the contents of
the table after cards 2 and 3 have been processed.



E-1088

Note that all the values on cards 4 and 5 were placed in memory in
accordance with the table assignments made on cards 2 and 3. The state-
ment INDEX = 3 was continued between cards 4 and 5.

A variable name may be singly subscripted. A subscript must be
an unsigned integer. For example:

RADIUS(2) = 6, 8, -10, , +24 card 6

will arrange data in the array X as

X(4) = 6.0

X(5) = 8.0

X(6) = -10.0 floating point
X(7) = no change

X(8) = 24.0

Thus, the subscript (2) on the variable name RADIUS advances the storage
counter to the second position of the array RADIUS before storing the
values. Because the name RADIUS was made equivalent to X(3) by card 2,
the value for RADIUS(2) is placed in X(4). The commas appearing between
the numerical values on card 6 are an example of loading into consecu-
tive memory locations. A series of numbers separated by commas are
loaded in successive memory locations. Two commas in succession with

no number included cause a memory location to be skipped without

change, as for X(7).

Octal values. - A data value preceded by (ocT) will be loaded
without conversion. The rightmost twelve digits, or less, if there are
less, immediately following the ) character, blanks omitted, are loaded

as an octal number. 1In storage the octal number will be right-adjusted.
The loading statement

I(2) = (oCT) 175 326 card 7

will store directly, without conversion, the octal number 000000175326
into the second member of the I array. The digits 8 and 9 will be
stored modulo 8.

Alphabetic values. - A data value preceded by (AIF n) will be
stored in binary coded decimal. This form, n being an integer, will
cause the next n columns immediately following the ) character,
blanks included, to be read in BCD mode and stored consecutively six
characters per location. If the last word is less than six characters
in length, it will be filled out with blanks. A1l alphabetic, numeric,
and special characters may be loaded with this form of loading state-
ment. Symbols such as $DATA will be interpreted as alphabetic data and
will not be interpreted as control statements within the n columns of
an (ALF n) form. The length of the alphabetic loading statement has




practical limitations only; but, if it exceeds 924 characters (or col-
umns ), mechine memory locations smaller than octal 77462 will be
overwritten.

An example of an alphabetic-type loading statement would be
I(3) = (ALF 23) MAKE IT UNDERSTANDABIE. card 8

where the 23 columns of characters will be placed in four consecutive
words of memory.

Internally addressed values. - An internally addressed value is
one that refers to the contents of memory by name. In the example

RADIUS(7) = RADIUS(3) card 9

it 1s demonstrated that a name may refer to a piece of data currently

in storage. The loading of this statement results in the replacing of
the contents of the storage equivalent to RADIUS(7) with the value

found in the location RADIUS(3). Any name that is used as an internally
addressed value must have appeared previously in $TABIE statement.

Arithmetic expressions. - Provisions have been made to allow simple
arithmetic to be performed on data at execution time. Any number may
be altered by addition (+), subtraction (-), multiplication (%), or
division (/) with other numbers or names, provided all names used in
statements appear previously in $TABIE statement. Operations are per-

formed in sequence from left to right on the card. Consider the
statement

RADIUS(2) = 0.5 * RADIUS(3), RADIUS(3) = 1.06E+2 - ()/TI  card 10

as being executed subsequent to card 6. The result of loading this
statement would be to replace the contents of the location RADIUS(2)
with the product of 0.5 and RADIUS(3) or, using the value loaded from
card 6, RADIUS(2) would contain 4.0 in floating-point form. Execution
of the second statement on the card will then change RADIUS(3). The
value of the arithmetic statement following RADIUS(3) will be computed
as follows: First the difference between 106 and the current value of
RADIUS(3) (which is denoted by an empty set of parentheses) will be
computed. Then the difference will be divided by the contents of the
location equivalent to I. The value, therefore, placed in the location
RADIUS(3) would be 2.0 in floating-point form. No regard need be given
the modes of the numbers in a loading statement, since all operations
are performed in floating-point form with the proper conversion pro-
vided. No provisions have been made for subgrouping or nesting opera-
tions. If more than one operator appears in sequence (such as A/—S),
an error diagnostic will result.

L

880T-H

-



practical limitations only; but, if it exceeds 924 characters (or col-

umns ), machine memory locations smaller than octal 77462 will be
overwritten.

An example of an alphabetic-type loading statement would be
I(3) = (ALF 23) MAKE IT UNDERSTANDABLE. card 8

where the 23 columns of characters will be placed in four consecutive
words of memory.

880T-E

Internally addressed values. - An internally addressed value is
one that refers to the contents of memory by name. In the example

RADTUS(7) = RADIUS(3) card 9

it is demonstrated that a name may refer to a piece of data currently

in storage. The loading of this statement results in the replacing of

the contents of the storage equivalent to RADIUS(7) with the value

found in the location RADIUS(3). Any name that is used as an internally .
addressed value must have appeared previously in $TABLE statement.

Arithmetic expressions. - Provisions have been made to allow simple i
arithmetic to be performed on data at execution time. Any number may
be altered by addition (+), subtraction (-), multiplication (¥), or
division (/) with other numbers or names, provided all names used in
statements appear previously in $TABIE statement. Operations are per-

formed in sequence from left to right on the card. Consider the
statement

RADIUS(2) = 0.5 * RADIUS(3), RADIUS(3) = 1.06E+2 - ()/I  card 10

as being executed subsequent to card 6. The result of loading this
statement would be to replace the contents of the location RADIUS(Z)
with the product of 0.5 and RADIUS(3) or, using the value loaded from
card 6, RADIUS(2) would contain 4.0 in floating-point form. Execution
of the second statement on the card will then change RADIUS(3). The
value of the arithmetic statement following RADIUS(3) will be computed
as follows: First the difference between 106 and the current value of
RADIUS(3) (which is denoted by an empty set of parentheses) will be
computed. Then the difference will be divided by the contents of the
location equivalent to I. The value, therefore, placed in the location
RADIUS(3) would be 2.0 in floating-point form. No regard need be given
the modes of the numbers in a loading statement, since all operations
are performed in floating-point form with the proper conversion pro-
vided. No provisions have been made for subgrouping or nesting opera-
tions. If more than one operator appears in sequence (such as A/—S),
an error diagnostic will result.

.



E-1088

The array X would finally appear as:

X(1) = 3.4

X(2) = 32.0 -

X(3) = 4.0%10 ) Tloating point

X(4) = 4.0

X(5) = 2.0

X(8) = -10.0

X(7) = whatever was present originally

§gg% : g%bo } floating point.

x(20) = 3

X(21) = 47 fixed point

x(22) = 49

X(23) = 000000175326 OCTAL

X(24) = MAKE T BCD

X(25) = T UNDE BCD

X(26) = RSTAND BCD

X(27) = ABIE. BCD
Continuation of loading statement. - To continue a right side of a

loading statement from one card to the next, simply continue key punch-
ing on the next card. Continuation of the right side never fails.

The name on the left of the equal sign, however, cannot generally
be continued. It will be found that continuation of the left side does
work unless the part of the statement appearing on the second card
appears (by itself) to be a left side, that is, a name followed by an
equal sign. This restriction on left-side continuation was adopted to
permit the omission of the final comma on the right side of loading
statements. In actual use, this left-side restriction has not been
inconvenient; in fact, the legibility is better when the name is en-
tirely on one card. An example of correct continuation of a loading
statement was given on cards 4 and 5.

$¢ Comment Statement

This type statement causes the entire card on which the $§ pair
appears to be written in BCD on tape 6 for listing off-line. The $$
characters may appear anywhere on any type card and even ahead of a
$DATA type card. The effect of the $$ symbol pair is to move the end



10

of a card from column 72 forward to the column shead of the symbol pair.

Anything appearing to the right of the $$ symbols will be listed but .
will not be treated as a loading statement. TFor example, two cards

containing

$$ THIS IS THE FOURTH CASE. card 11

I = 4, VELOCITY(9) = 3.762E7, $$ INPUT CARD card 12
will cause these cards to be written on tape 6 along with all other
program output. Furthermore, if these cards are processed along with

the previous cards, the values for I and VELOCITY(9) will be changed to
a fixed-point 4 and a floating-point 37620000.0, respectively.

880T-4

DIAGNOSIS OF ERRORS ON INPUT CARDS

The greatest source of errors introduced during preparation of in-
put statements arises from misspelling names, improper use of the
numeric-alphabetic shift on the key punch, and misuse of operators, - ‘
commas, and equal signs. -Considerable care has been taken within the
program to detect errors that lead to illegitimate situations in the
- processing of the data. However, a few illegitimate statements are not
detected by the routine and will process improperly or, as likely, be
omitted.

When an error is detected on a card, the type of error and the com-
plete offending card image are written on tape 6. An asterisk is recorded
beneath the last character processed and is usually within a few char-
acters of the one causing the error. If the asterisk is beneath the
first character of a card, the error was probably on the preceding card.
Generally, a cursory examination of the printed card and asterisk is
sufficient for detection and correction of the card. A complete list
of error types and associated discussions is given in appendix C for a
more complete analysis.

As an illustration of a machine-detected error, assume that the
cards

$DATA = 589, $TABLE, 1 = TX/ $$ card 13
TY = 35.7 $$ cara 14
$DATA = 589 $$ carda 15

are to be processed by the input routine. An error would be detected
when the variable name TY is processed because it is not in the table.

Tape 6 would subsequently contain the following BCD information for
listing off-line:

(T) NO ENTRY IN TABLE TY = 35.7 $$ cara 14



E-1088

11

Examination of the error type and discussion in appendix C reveals that
a type T error means "There is no table entry for a variasble name."”

EXAMPLE

The following FORTRAN program is presented as an example of a call-
ing sequence for the INPUT subroutine and may be used to check the
functioning of the routine.

C THIS IS A SAMPLE PROGRAM TO CALL THE INPUT SUBROUTINE.
C IT READS A SET OF DATA AND PRINTS OUT AN AREA OF STORAGE.
COMMON C

DIMENSTON X(30)s TARLE(15)9sC(65)eL(65)
EQUIVALENCE(XsC)s (TABLESC{50))s(LsC)

C TRANSFER TO THE INPUT ROUTINE
1 CALL INPUT (5899 Xs TABLFE)
C PRINT OUT THE STORE.
WRITE OUTPUT TAPE 641019(JeX(J)sJ=199)elJsl(J)sJ=20427)
C TRANSFER TO READ MORE DATA
GO TO 1 '

101 FORMATI(9(3H X(12s1H)1PF1846/)s 3(3H X{(I12s1H)eI7/)3H X(912s1H)
1015/94(3H X(I1291H)AB/))
C END OF FORTRAN STATEMENTS.

The data cards listed in the text are used. For clarity, all cards have
been terminated with $$ so that they will be listed on the output, and
two extra $DATA cards are inserted, making four groups of data. The
data cards are as follows:

$DATA = 589 $% CARD 1
$STARLEs 1 = VELOCITYs 2 = MASSy 3 = RADIUS/ $% CARD 2
$TABLEs20e = INDEXs 21e = SUBSCRIPTy 224 =1 / $% CARD 3
VELOCITY = 3e¢49¢ MASS = 324 RADIUS = 4E+21s INDEX $$ CARD &4
=z 3y SUBSCRIPT = 47y I = 49 . $$ CARD 5
RADIUS(2) = 6989~10s9+24 $% CARD 6
$DATA = 589 $SINSERTED
I{2) = (OCT) 175 326 » $%$ CARD 7
1(3) = (ALF23)MAKE IT UNDERSTANDABLES $3 CARD 8
RADIUS(7) = RADIUS(3) $% CARD 9
RADIUS(2) = 005 *RADIUS(3) » RADIUS(3) =1,06FE+2-()/1 $%$ CARD 10

$DATA = 589 : $$INSERTED
$$THIS IS THE FOURTH CASF CARD 11
T = 49 VELOCITY(9) = 34762F7s $SINPUT CARD CARD 12
$DATA = 589s STABLEs 1 = TX / $$ CARD 13
TY = 3547 $$ CARD 14
$DATA = 589 $$ CARD 15

In this example the storage will be printed out after the data
cards have been processed for each group. (A group is all cards between
$DATA cards.) The listing made from tape 6 is as follows.



B-1088

13

REMARKS

The INPUT routine as described removes the necessity for the pro-
grammer to supply detail concerning data at the time the problem is
coded. At'most, he must decide the appropriate time and number of times
during execution of the program that input is to be read. The routine
also provides increased flexibility at execution time to meet the re-
quirement of specific problems.

It is felt that the form of the statements for loading data pre-
sented in this report is considerably more legible and, consequently,
is easier to check for accuracy and completeness than the form pre-
viously in general use.

A binary deck céan be obtained for this program from the Lewis
Research Center (Att'n Mr. Vearl N. Huff). A similar deck for the 7090
is also available.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, June 28, 1961



14

APPENDIX A

IOGICAL STRUCTURE OF INPUT ROUTINE

The following definitions and specifications define the external
characteristic of the INPUT routine.

(1) There are two classes of statements: loading statements, and
control statements.

(2) A loading statement consists of a left side, an equal sign, and
one or more right sides.

(2) A loading statement loads the machine memory location
corresponding to the left side with the value obtained from
the right side.

(b) Successive machine memory locations are loaded with the
values obtained from successive right sides.

(3) A left side must consist of a name and must be followed by an
equal sign. It may follow previous loading statements. A left side is
normally restricted to one card.

(4) Any name:

(a) Must begin with an alphabetic character.

(b) May contain any number of alpha-numeric characters
(practical limits only).

(¢} Must be defined as to corresponding location and as either
fixed or floating point in the table of names (failure to
enter a name in TABLE will cause an error diagnostic).

(d) Will have zero characters translated to the letter O in
any position after the first.

(e) May be singly subscripted.

(f) Is ended by an operator or the end of a side.

(g) Will have the value of the contents of the location to
which it corresponds. Normally, the value is treated as a

floating-point number. However, if the name is designated
as fixed-point, then the value will be fixed before storing

and floated when obtained from storage. Fixed-point numbers-

are stored in the prefix and decrement as is done with
FORTRAN.

OONT _rr



14

APPENDIX A

IOGICAL STRUCTURE OF INPUT ROUTINE

The following definitions and specifications define the external
characteristic of the INPUT routine.

(1) There are two classes of statements: loading statements, and
control statements.

(2) A loading statement consists of a left side, an equal sign, and
one or more right sides.

(a) A loading statement loads the machine memory location
corresponding to the left side with the value obtained from
the right side.

(b) Successive machine memory locations are loaded with the
values obtained from successive right sides.

(3) A left side must consist of a name and must be followed by an
equal sign. It may follow previous loading statements. A left side is
normally restricted to one card.

(4) Any name:
(a) Must begin with an alphabetic character.

(b) May contain any number of alpha-numeric characters
(practical limits only).

(c) Must be defined as to corresponding location and as either
fixed or floating point in the table of names (failure to
enter a name in TABLE will cause an error diagnostic).

(d) Will have zero characters translated to the letter O in
any position after the first.

(e) May be singly subscripted.
(f) Is ended by an operator or the end of a side.

(g) Will have the value of the contents of the location to
which it corresponds. Normally, the value is treated as a
floating-point number. However, if the name is designated
as fixed-point, then the value will be fixed before storing
and floated when obtained from storage. Fixed-point numbers
are stored in the prefix and decrement as is done with
FORTRAN.

OONT



15

(5) A subscript (if any) follows and is part of a name; it begins
with a left parenthesis followed by digits, followed by a right paren-
thesis. The subscript refers to members of arrays:

(a) A variable (or named) subscript is illegal.
(b) A subscript may be used on any name.
(6) A right side:
(a) Must follow an equal sign or another right side.
(b) May be a name.
(¢c) May be a number.
(d) May be an octal number.
(e) May be an alphabetic field.
(f) May be an arithmetic expression.

(g) May be blank. A blank is two commas in succession (a
blank will not change the present value of the memory) .

(h) Must be terminated by a comma or the end of a card, buf
the end of a card terminates a right side only if it is
determined to be the end of the loading statement (see (7)).

(i) May be continued from one card to another.
(7) The end of a card terminates a loading statement if:
(a) The next card is $DATA or $rABIE.

(b) The next card begins with a left side (i.e., begins with
a name followed by an equal sign on the same card).

(8) A nunber is an unsigned string of digits that may contain a
decimal and may be followed by a base 10 exponent. If there are more
than ten digits in the string exclusive of the exponent, only the ten
most significant digits will be used in conversion to find its value.
Decimal places are counted for indefinitely long strings. A number is
terminated by an operator or the end of the right side.

An exponent begins with the letter E and may be followed by a. sign
and/or a string of digits whose value is used as the exponent. The
exponent, when present, is used in conversion to compute the final value
of the number. Overflow is possible. A signed number is treated as an
arithmetic statement.



16

(9) An octal number begins with a left parenthesis followed by the
letter O, which may be followed by any number of letters followed by a
right . parenthesis, followed by any number of digits, normally followed by
a comma (see (6h)). The rightmost twelve digits, or less if there are
less, are used as the value right-adjusted. Neither floating- nor fixed-
point designations have any effect for storing octal numbers.

(10) An alphsbetic field begins with a left parenthesis followed
by the letter A, and may be followed by any number of letters, and must
be followed by any number of digits (which will designate the number of
card columns in the alphabetic field) followed by a right parenthesis,
followed by the alphabetic field in successive columns (to col. 72),
and continuing if necessary on successive cards until the designated
number of columns has been stored. Any BCD characters can be punched
in the field. A comma normally follows the alphabetic field to termi-
nate the right side (see (6h)). WNeither floating- nor fixed-point
designation has any effect when storing ALF data.

(11) An arithmetic expression contains one or more operators. The
following rules must be observed in arithmetic statements:

(a) The operators are plus, minus, asterisk, and slash.

(b) An arithmetic expression also contains at least one
operand.

(c) The operands may be names, numbers, or empty parentheses.

(d) Empty parentheses are used to designate the current value
of the current left side.

(e) Two operators must not appear together.

(f) Operations are verformed from left to right on the values
of the operands in the sequence given, and the result is the
value of the arithmetic statements.

(g) Parentheses to indicate order of operations are illegal.

(h) Storage in named memory locations may be used to éocu—
mulate factors for subsequent statements.

(12) A $TABIE control statement stores names and equivalent machine
locations relative to the second argument of the calling sequence in a
table located relative to the third argument of the calling sequence.
The $TABLE control statement begins with a dollar sign followed by a T,
followed by any number of alphabetic characters, followed by a comma.
Subsequent substatements are interpreted as $TABLE substatements.

RROT -



L=LU0o0

17

(a) $TABLE substatement begins with a numeric string that
contains a decimal point only if a fixed-point variable is
being defined, and is followed by an equal sign followed by
a name, followed by a comma.

(b) Any number of $TABLE substatements may be used and may be
unconditionally continued over any number of cards. The
last statement is followed by a slash that ends the $TABLE
control statement.

(13) A $DATA control statement is used to establish correspondence
between a group of data and a particular calling sequence and to signal
an end of a group of data. It begins with a dollar sign in the first
nonblank column on a card, and is followed by the letter D followed by
any number of letters, followed by an equal sign, followed by a string
of digits, followed by a comma or the end of the card. The value of the
string of digits is used to compare with the first argument of the call-
ing sequence. The entire statement must be on one card.

(14) The symbol pair &8 occurring on a card has the effect of ending
the processing of the card at the column shead of the $¥ symbol pair and
causes the entire card (72 columns) to be written on output tape 6 along
with any other output. The next character processed will be read from
the next card. The $$ symbol pair serves to insert comments in the out-
put and may be used to list the input cards with the output. Tt may be
used anywhere but will not be interpreted within an alphabetic field.



18

APPENDIX B

ILLUSTRATION OF VARIABLE NAMES IN TABLE

Assuming that the following $TABIE cards have been processed, the

array TABLE would appear as indicated.

$TABIE, 1 = VELOCITY, 2 = MASS, 3 = RADIUS/

$TABLE, 20. = INDEX, 21. = SUBSCRIPT, 22. = I/

TABIE

LOCATTON

OO~ U WD

*Except for code word.
code word contains a
the number of stores
address of each code
number corresponding
of the name.

ing 4.

OCTAL

VALUE

000003000001
652543462331
637000000000
000002000002
442162620000
000002000003

512124316462

400002000024
314524256700
400003000025
626422622351
314763000000
400002000026
310000000000
000000000000

BCD
CONTENTS™

(code word)
VELOCI

TY

(code word)
MASS

(code word)
RADIUS
(code word)
INDEX

(code word)
SUBSCR

IPT

(code word)
I

(zero code)

The decrement of each

number equal to 1 plus
used for the name. The
word contains an octal
to the table assignment

The sign of a code word is neg-
ative 1f the variable is fixed point. A neg-

ative sign in this listing appears as a lead-

A A -



“m-logy o

19

APPENDIX C

ERROR DIAGNOSTICS

The following is a list of errors referred to by the off-line

listing.

Error
type

()

(B)
(c)
(D)

(E)

(L)
(M)

(W)
(RTT)

(s)

Reason
A nonnumeric character appears in the numeric field of a $TABLE
type card.
A comma was not used to terminate an ALF field.
An illegitimate character appears in the subscript of a name.

The equal sign of a $DATA type statement is missing or preceded
by a nonalphabetic character.

An illegitimate character appears in the numeric field of a
number.

An illegitimate character appears in the exponent field of an
E format number.

A special character was used in a name of a table entry.
An (OCT) field contains a nonnumeric character.

A special character appears in character count of an (ALF) type
field, or the character count was zero.

A special character other than +, -,3%, Oor / was interpreted as
an arithmetic operator.

A nonnumeric character appears in the identification field
of a $DATA type card.

More than one decimal point occurs in a number.
A REDUNDANCY tape test failed five times.

At least one numeric did not precede the E of an E format
number.



20

(T)
(U)

(V)

There is no table entry for a variable name.

A $DATA type card was not found as the first card of a set of
data.

The exponent of a floating-point number was out of range.

N e



E-1088

21

APPENDIX D

STORAGE ALLOCATION

Nearly all intermediate data generated by the INPUT routine are
stored in an area that is generally inaccessible to programmers coding
in the FORTRAN language. This area is the last 205 core positions of
the computer. It is temporary storage utilized by many of the library
routines written for the 704 computer as well as an area from which the
BSS loader operates in loading program decks. Location 77463 (octal),
while in the erasable area, is readily accessible to FORTRAN coders.
The location will contain the identification number from the BDATA card
present when the INPUT routine is called, whether data are loaded or
not. When this number is to be used later, it should be moved to a
reserved location. The assignments in the common area are as follows:

oct
77716 RECORD(1)

77775 (2)

77774 (3)

71773 (4)

77772 (5)

77771 (8)

77770 (7)

77767 (8)

77766 (9)

77765 (10)

77764 (11)

77763 (12)

77762 (13)

77761 (14)

77760 I

77757 KK

77756 Q

77755 WORD

77754 OPER

77753 Temporary Index B in SUB TABIE. Also NEXP in SUB NUMBER.
77752 J

77751 MSHIFT

77750 I10C

77747 TEMP

77746 KNT1

77745 KNT2

77744 KNT3

77743 SIGN in SUB CHRCTR

77742 ALF in SUB CHRCTR

77741 TAG in SUB CHRCTR

77740 Temporary MQ in SUB STORE
77737 JK

77736 Index A storage in SUB CHRCTR
77735 Index B storage in SUB CHRCTR
77734

77733 Index C storage in SUB LOOK
77732 Index A storage in SUB STORE
77731 Index B storage in SUB STORE
77730 Index C storage in SUB TABLE
77727 Table entry index in SUB TABLE
77726 Index C storage in SUB CHRCTR
77725 Temporary MQ storage in SUB TEST
77724 Temporary ACC storage in SUB TEST
77723 Index C storage in SUB DATA
77722 Third argument to SUB INPUT
77721 JKL

77720 Index C storage in SUB NUMBER
77717 Pseudo ACC

777186 TIOC1

77715

77714 VAR(1)

77462 VAR(153)

77463 IDENT, $DATA identification number



22

00000
00001
00002
00003

00000

0 00000 0 01521
0 00000 O 77462
314547646360

0 00000 O 0000U

00000
77776
77760
77757
77156
77755
T7754
77753
77753
77752
77751
17750
77747
TT746
77745
77744
77714
T7463
77743
77742
77781
17737
77734
77721
77717
77716
77715

APPENDIX E

LISTING OF INPUT ROUTINE

RECORD
1

KK

4]
WORD
GPER
B
NEXP
J
MSHIFT
ILec
TEMP
KNT1
KNT2
KNT3
VAR
IDENT
SIGN
TAG
ALF
JK
RTT
JK1
ACC
IL0C1
KNT4

ORG
PGM
PZE
PZE
BCD
PlE

REL
ORG
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
EQuU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

THIS IS SUBROUTINE INPUY. ITS CALLING SEQUENCE
CONTAINS THREE ARGUMENTS—--AN IDENTIFICATION

CODE NUMBER, THE FIRST LOCATICON RELATIVE TO WHICH
ALL DATA IS TO BE LOADED, AND THE FIRST LCCATION
OF A TABLE TO BE USED BY THE ROUTINE.

INCLUDED IN THIS ASSEMBLY ARE SUBROUTINES
INPUT

CHRCTR

CLEAR

COMPAR

ERROR

LOOK

NAME

NUMBR

STORE

TABLE

11 TEST

12 ACCUM, FIX, FLT, BINARY

_ ‘
QOVONOWNELN

COBING FOR THE PROGRAM CARD.
]

EXP+1,0,0
32562
TINPUT
INPUT

THESE TEMPORARY VARIABLES ARE LOCATED IN
ERASABLE UPPER MEMORY.

0 .

32766 CARD IMAGE.

32752 WORD POINTER FOR CARD

32751 CHARACTER POINTER FOR CARD.

32750 UNTESTED CHARACTERS IN COMPAR.
32749 CURRENT CHARACTER IN ADDRESS PART.
32748 DIGIT IN DECREMENT REPRESENTS OPERATOR.
32747 TEMP INDEX IN SUB TASBLE.

32747 NUMERIC VALUE OF EXPCONENT.

32746 COUNTER IN SUB STORE.

32745 COUNTER IN SUB STORE.

32744 DATA BROUGHT FROM TABLE.

32743 TEMPORARY STORAGES.

32742 COUNTER TOTAL DIGITS.

32741 NONZERC UNTIL CECIMAL IN NUMBR.
32740 ZERO UNTIL DIGIT IN EXPONENT.
32716 SPACE FOR NAMES ETC.

32563 DECREMENT HAS IDENT FROM CARD.
TEMP-L4 MINUS IF SUB CHRCTR READS CARD.
TEMP-5 SAVES $ IN SUB CHRCTR.

TEMP-6 NONZERO MEANS ALF MODE IN CHRCTR.
TEMP-8 SUBSCRIPT CORRESPONDS TO NAME.
TEMP-11 COUNTS TAPE READ FAILURES.
TEMP-22 CURRENT SUBSCRIPT CF LEFT SIDE.
TEMP-24 PSEUDO ACCUM.

TEMP-25 ILOC FCR LEFT SIDE.

TEMP-26 NONZERO AFTER EXPONENT SIGN.

AaANAT T



E-1088

00000 0O 00000 O 00000 INDX HTR 0 STORAGE FOR INDEX A.

00001 0 00000 0 00000 HTR O STORAGE FOR INDEX B.

00002 0 00000 0 00000 HTR 0 STORAGE FOR INDEX C.

00003 314547646360 BCO VTINPUT

00004 -G 63400 1 00000 INPUT SXD INDX,) SAVE INDEX REGISTER A.

00005 -0 63400 2 00001 SXD INCX+1,2 SAVE INDEX REGISTER 8.

00006 -0 63400 4 00002 SXD INDX+2,4 SAVE INDEX REGISTER C.

00007 0 50000 0 00351 CLA ONEA

00010 0O 40000 ¥ 00002 AUD 2,4 244 IS THE BASE LOCATION.

00011 O 62100 0 00127 STA S&T

00012 ¢ 62100 0 00153 STA LOC1

00013 0 62100 0 00311 STA LOCH

00014 0 50000 & 00001 CLA 1,4 To4 IS THE IDENTIFICATION NUMBER.

00015 0 62100 0 00102 STA NREG]

00016 0 53400 1 0C304 LXA LOCBB-2,1 INITIALIZE 36

00017 0 60600 1 77761 STZ I+1,1 LOCATIONS

¢0G20 2 00001 1 00017 TIX #-1,1,1 TO ZERO.

00021 O 60100 0 77716 STO ILCC1 MAKE NON-ZERQC.

00022 0 50000 4 00003 CLA 3,4 3,4 IS THE LOCCATION CF THE TABLE.

00023 0 62100 0 0C677 STA LOCFC PREPARE

00024 0 40000 0 00351 ° ADD ONEA } THE

00025 0 62100 0 0066YL STA LOCFA ARGUMENT STORAGES

00026 0 62100 0 00707 STA LOCFF

60027 0 07400 4 00517 TSX CLEAR,Y4 CLEAR THE VAR REGION.
LOOK AT THE FIRST CHARACTER ON THE FIRST CARD
IN SEARCH CF A $ SIGN.

Go030 0O O7400 4 00352 LCCAA TSX CHRCTR,4

Gu031 G 76000 0 00003 SSP

G0032 0 40200 0 00350 SUB DOLLAR CHECK FOR A $ SIGN.

00033 G 60100 0 77755 STO WORD

00034 U C74GC0 4 00424 TSX COMPAR, 4

C0035 246360000000 8CD 10710000

CU036 ¢ 02000 2 0COu2 TRA #+44,2

CCO37 ¢ ©2000 0 00345 TRA ERRU JUNK

GG04C - G C200C G 00111 TRA LOCAH T

GO0kl G L3400 2 00102 LOCAB LXA NREG1,2 D

0C0uZ 3 000C0 2 00650 TXH LOCAD,2,0 NREG! IS ZERO IF A $DATA CARD HAS
ALREADY BEEN READ.

GOOu3 G 76400 0 00207 LCCAC BST 7
THIS IS THE PROGRAM RETURN.

00044 -0 53400 1 00000 RTN LXD INDX,1 RESET INDEX A.

00045 -G 53400 2 00001 LXD INDX+1,2 RESET INDEX B.

00046 ~0 53400 4 00002 LXD INDX#2,4 RESET INDEX C.

00047 0O 02000 4 00OOW TRA 4,4 RETURN TO CALLING PROGRAM.

HUNT FOR THE = SIGN OF THE $ DATA CARD.
00050 O 07400 4 00352 LOCAL TSX CHRCTR,4

00051 0 07400 &% 00524 TSX COMPAR,4
0C052 130000000000 8CD 1=00000
00053 0 02002 2 00060 TRA %45,2,2
C0054 0 02600 O 00335 TRA ERRD JUNK
00055 0 02000 O 00050 TRA LOCAD ALPHABETIC
(0056 0 02000 0 00335 TRA ERRD NUMERIC
CCOS7 -0 63400 4 77741 SXD ALF.4 = SIGN
USE ALF MODE 7O TEST ALL CHARACTERS.
0006C 0 02000 0 00062 TRA LOCAF

00061 0 G7400 4 01453 LOCAE TSX BINARY,Y4 FORM BINARY WORD IN VAR.




24

U062
06063
oGoou
00065
0GCo66
00067
00070
¢oo71
0G072
Coo73
00074
00075
G007¢6

00077
001c60
Coto1
00102
00103
00104
0G1GS
001G6
go107
00110

0ot
00112
0013
00114
gots

00116
6o
00120
00121
00122
00123
001124
00125

00126
00127
00130
00131
00132
00133
0013y

00135
00136
00137
00140
00141
00142

CoCcCcoo~NCOoCCCCO

]

cococcocecocoocc

cCoOOoCCOCO0

0
0
0
0
0
7

U740C 4 00352
12000 0 06067
76400 0 002067
60000 0 77760
v2000 O occC77
07400 4 00524
3536C000000
(2002 2 0C100
02000 0 00343
02000 0 00343
G2000 0 00w6l
02000 0 00062
60100 0 77743
50000 0 77714
76700 0 00022
60160 0 TT7Tu63
40200 € 00000
10000 0 00043
60000 0 77741
62100 0 00102
53400 2 77741
63400 2 00121
02000 0 00155
53400 2 00102
00000 2 00114
02000 O 00345
07400 4 01242
02000 0 00157
07400 4 00714
10000 0 00126
53400 1 77721
00000 1 00161
63400 2 00121
50000 0 77750
60100 0 77716
02000 0 00156
53400 2 77737
50000 2 00000
60100 O 77747
50000 0 77750
12000 0 00137
07400 4 01462
02000 0 00137
07400 4 00777
60100 O 77747
07400 4 01476
07400 4 00517
07400 4 00524
30000000000

LCCAF

LOCAG

NREG 1

LOCAH

LecCaJ

LOCAK

TESTJK

SET

LOCAL

LOCAM

TSX
TPL
BST
STZ
TRA
TSX
8CD
TRA
TRA
TRA
TRA
TRA
STO

CLA
ALS
STO
SuB
TNZ
STZ
STA
LXD
SXD
TRA

LXA
TNX
TRA

TRA

TSX
TNZ
LXD
TXL
SXD

CLA

STO
TRA

LXD

STO
CLA
TPL
TSX
TRA

TSX
STO
TSX
TSX
TSX
BCD

COMZES HERE WHEN = SIGN HAS BEEN FCUND. GET THE
[DENTIFICATION NUMBER FROM THE CARC.

CHRCTR, 4

LE X IF NEGATIVE, NO COMMA WAS CON THE
7 $DATA CARD SO BACKSPACE TAPE.
I . INITIALIZE I TO READ A CARD.
LOCAG

COMPAR, 4

1,% 000

#4+74,2,2

ERRM JUNK

ERRM ALPHABETIC

LCCAE NUMERIC

LOCAF BLANK

SIGN DOLLARS

COMES HERE TO CHECK THE REGION CODE AND THE
VALUE APPCARING ON THE $DATA CARD.

VAR cCOoMMA

18 \

IDENT SAVE IDENT AT 774é63.

* % PLACE FIRST ‘ARG IN THIS ADDRESS.
LOCAC ZERO IF CALL CODE = $DATA CCDE.
ALF ALF = 0 MEANS NO ALF INFC.

NREG TO INDICATE THAT A $DATA CARD HAS
ALF,2 BEEN READ.

TESTJK,2 ZERO THE DECREMENT.

LOCAN1

COMES HERE IF IT WAS A $ TABLE CARC.
NREG1,2 CHECK TO SEE IF A $ DATA CARD HAS

LOCAJ,2,0 BEEN READ. NREG! = 0 IF SOCa.
ERRU

TABLE, &

LOCAN3

COMES HERE IF AN ALPHABETIC CHARACTER WAS FOUNU.
NAME 4

SET-1 ZERO MEANS ON LEFT OF = SIGN.
JK1, 1 IF JK1 DIDNOT INCREASE THEN
ERRLy 1,y un AN = SIGN WAS NOT USED.
TESTJUK,2 SAVE JK1 FOR NEXT TEST.

[Loc SAVE SIGN OF TABLE ENTRY.
ILoCH

LOCANZ2

JKy2 PREPARE TO ACCUMULATE THE NUMBERS
*wy2 IN THE PSEUDO ACCUMULATOR.
TEMP

ILocC

LOCAM MINUS MEANS FLOAT THE NUMBER.
FLT 4

LOCAM

COMES HERE IF NUMERIC FIELD.

NUMBER s 4

TEMP

ACCUM, 4 ACCUMULATE RESULTS IN ACC.
CLEAR, Y4

COMPAR . &

1,00000 LOOK FOR COMMA

3

880T-H



E-1088

GGlu3
Cutly
Cotus
CGluo
0ou7
00150
Co151
Cu152
0c153
00154
CO155
Cu156
00157
CulecC
Cote
CG162
0C163
ciloy

Cu165
0G166
0Gloe7
Gul70
golry
cuirz
0173
oulrTy
00175
0G176
VIR
0g200
00201
0C202
00203

00204
00265
002006
00207
c0210G
ce21N

co212
00213
00214
00215
GG21e6
00217
06220

0221
00222
00223
00224
00225
00226
00227

U 0200GC 2 0CI146
G 020C0 G 06200
-0 53400 2 77721
0 50000 0 77717
0 60C0C O 77717
0 56060 0 77716
0 162C0 0 00153
0 07400 4 01470
G 601C0 2 00000
-0 53400 2 17721
1 000C1 2 00156
-0 63400 2 77721
~G 53400 1 77754
-3 G00CO 1 00163
G UTHCO & 00564
607443346060

¢ 50000 0 77717
10000 O 0C016)

-0

0 07400 4 00517
U U7T400 4 00352
U 07400 4 00524
336174000000

cowccoccocooaoaco

G

u2002
020C0
42060
020G0
020¢C0
020CC
02000
534C0
c0000
40200
12000

07460

OCO=wOOOCCCON

y

00200
06200
00116
00135
00212
00200
00135
77754
06161
00350
00033

00524

204061547300

3
3
-0
V]

V]

500605
000CH
63400
02000

07400

2
2
2
0

y

00161
00154
77154
00166

00352

0 Q7400 4 00524
344621000000
0 02000 2

0
]
V]

cCoLcoooo

02000
02000
G206G0

G7400
12000
074C0
50000
60160
53400
02000

0
0
0

ONOCOOFOF

00222
00161
06262
00230

00352
00224
01377
77716
77750
77721
001127

LCC1
LCCAN
LOCAN]
LOCANZ
LOCAN3

ERRL

LCCAO
LOCAP
LOCAG

LOCAR

LOCAT

TRA
TRA
LXUu
CLA

LDG
TGP
TSX
STO
LXD
X1
SXD
LXD
TXL
TSX

TNZ

TSX
TSX
8CD
TRA
TRA
TRA
TRA

TSX
TPL
TSX

STO
LXD
TRA

25

OTHER THAN COMMA.
COMMA

INITIALIZE

IS THIS VARIABLE FIXEC POINT.
NEGATIVE IS FIXED POINT.

STORE THE NUMBER RELATIVE TO BASE.
RAISE STORING INDEX BY ONE.

SAVE IT.
ANY OPERATORS LEFT OVER.

ANY CATA LEFT OVER.

CALL THIS THE SWITCH HOUSE.

CLEAR U
CHRCTR 4
COMPARy 4
1./0000
“4742,2
LOCAR
LOCAK
LOCAL
LOCAT
LOCAR
LOCAL

5 OPER,1

ERRL, 1,0
DOLLAR
LOCAA+3

WHAT KIND OF
COMPAR, 4
1+-/%,0
CRRL9 295
LOCAN, 2,4
OPER, 2

LOCAP

$0y $T, OR OPERATORS.

ALPHABETIC

NUMERIC

( SIGN

/ SIGN

DEC IMAL

ANY OPERATORS LEFTYT OVER.

HIGH MEANS ALREADY HAS OPERATOR.
SPLIT CFF $ CHARACTER FRCM CTHERS.
IF PLUSy PROCESS THE $ TYPE CHARACTER.
OPERATCR IS THIS.

REMOVE THE JUNK.

COMMA :

SAVE REST, WILL BRANCH IN SUB ACCUM
AFTER BOTH OPERANDS HAVE BEEN FOUND.

COMES HERE IF THE OCT OR ALF MODE.

CHRCTRy 4
COMPAR 4
1)CA000
*+5,2
ERRL
LOCAZ
LOCAU

JUNK
A CHARACTER
0 CHARACTER

COMES HERE IF EMPTY PARENTHESIS WERE FOUND.

CHRCTR, 4
®+2.
TEST,4
ILOCY
ILoC
JK1,2
SET

}SIGN, GET NEXT CHARACTER.
MINUS MEANS NEW CARD.
INSERT COMMA IF NEEDED.

PREPARE TO GET VALUE CF
CURRENT LEFT SIDE.




26

: COMES HERE [F OCTAL MOUE.
00230 O 07400 4% 00352 LCCAU TSX CHRCTR,u4

00231 0 07400 4 00524 TSX COMPAR, 4 ~
00232 340000000000 RCD 1)00000
00233 0 02000 2 00236 TRA #4%,2
00234 G 02000 0 00230 TRA LOCAU OTHERS
00235 0 02000 0 00245 TRA LCCAW ) SIGN
00236 -0 32000 0 00064 LOCAV ANA LOCAF+2 SAVE ONLY THE CCTAL NUMBER. e}
00237 0 60100 0 77755 STO WCRD gd
00240 0 56000 O 77714 LOG VAR o
00241 -0 76300 0 00003 . LGL 3 USE THE MQ TG ELIMINATE CVERFLOWS. @
00242 -0 60000 O 77714 STQ VAR @
00243 -0 50000 0 77755 CAL WORD ALL NUMBERS MODULO 8.
002u4 -0 60200 0 77714 ORS VAR
COMES HERE WHEN ) IS FOUNC.
00245 O 07400 4 00352 LCCAW TSX CHRCTR,u4
00246 0 12000 0 0025C TPL #+2
00247 0 07400 4 01377 TSX TEST,4
00250 0 07400 4 00524 TSX COMPAR, Y4
00251 730000000000G BCO 1,00000
00252 0 02002 2 00257 TRA #45,2,2
L 00253 0 02000 0 00337 TRA ERRJ JUNK
e 00254 0 02000 0 00337 TRA ERRJ ALPHABETIC
: 00255 0 02000 0 00236 TRA LOCAV NUMERIC
00256 -0 53400 2 77721 LOCAX LXD JK1,2 COMMA
00257 0 50000 O 77714 CLA VAR
00260 0 02000 € 00153 TRA LOC}
CONVERT THE NUMBER TC BINARY. .
00261 0 07400 4 01453 LOCAY TSX BINARY, 4
COMES HERE IF ALF MODE.
00262 0 07400 4 00352 LCCAZ TSX CHRCTR,4 -
00263 0 07400 4 00524 TSX COMPAR, &4
00264 340000000000 BCL 1)00000
00265 0 02002 2 00272 TRA #45,2,2
00266 0 62000 0 00341 TRA ERRK JUNK
00267 0 02000 0 00262 TRA LCCAZ ALPHABETIC
00270 0 02000 0 00261 TRA LOCAY NUMERIC
_ COMES HERE WHEN ) IS FOUND
00271 0 53400 1 77714 LOCBA LXA VAR,!} } SIGN
00272 -2 00000 1V 0G341 TNX ERRKy 1,0 ALF COUNT WAS ZERO.
00273 -0 63400 1 77741 SXD. ALF,)
00274 0 07400 4 00517 TSX CLEAR, Y
00275 0 07400 4 00352 TSX CHRCTR, 4 PULL THROUGH CHARACTERS AND STORE
00276 0 07400 4 01216 TSX STORE,& THEM ONE AT A TIME.
00277 2 000C! 1 00275 TIX #=2,1,1 GO BACK TILL NCHAR IS ONE.
00300 -0 53400 1 77752 LXD J,1
00301 -0 53400 & 77751 LXD MSHIFT,4
00302 0 56000 0 06636 LOQ BLANK
00303 -0 75400 0 00000 PXD 0,0
00304 -0 76300 4 COOuY LGL 3644
00305 -0 60200 1 77715 ORS VAR+1,1 FILL IN PARTIAL WORD WITH BLANKS.
00306 O 53400 4 0C303 LOCBB LXA %=3,4 SET INDEX C TO ZERO.
00307 -0 53400 2 77721 LXD JK1,2



a7

' 0C310 G 50000 &% 77714 LOCBC CLA VAR,4 PREPARE TO STORE ALPHABETIC WORDS.
00311 0 601G0 2 00000 LOCH STO =#,2 )
00312 1 00001 4 00313 TXL #+1,4,1 Jd=J+1
e ” 0u313 -0 75400 & 00000 PXD 0.4
B 00314 G 40200 0 77752 suB J
o 00315 0 10000 0 00321 TZE LOCBD
00316 1 00001 2 00317 TXI #41,2,1 JK1 = JK1 + 1
[s0] GU317 -0 6340C 2 77721 SXD JK1,2
8 0032C 0 02000 0 00310 TRA LOCBC
— 00321 G 60000 O 77741 LOCBD STZ ALF
[ C0322 G 07460 % 00517 TSX CLEAR, 4
M 00323 0 07400 & 00352 TSX CHRCTR, 4 LOOK AT NEXT CHARACTER.
00324 0 12000 0 00326 TPL =42
: 00325 ¢ 07400 4 01377 TSX TEST 4 PUT IN COMMA IF NEEDED.
00326 0 O7400 4 00524 TSX COMPAR, 4
0o327 730000000000 BCD 1,00000
0C330 0 02000 2 00333 TRA *+3,2,0
00331 0 02000 0 00333 TRA ERRB
(G332 0 02000 O 00154 TRA LOCAN GO RAISE AND STORE JK1.
THESE ARE ERROR CALLS
00333 0 07400 4 00564 ERRB TSX ERROR,4
CU334 607422346060 BCD 1 (B)
00335 0 07400 4 00564 ERRD TSX ERROR,4
C0336 607424346060 BCD 1 (U}
00337 0 07400 4 00564 ERRJ TSX ERROR,4
00340 607441346060 8CO 1 (J4)
00341 G 07400 4 00564 ERRK TSX ERROR,4
@ 00342 607442346060 BCD 1 (K)
! 60343 O 07400 4 00564 ERRM TSX ERROR, 4
0034y 607444346060 BCD 1 (M)
00345 0 07400 4 00564 ERRU TSX ERROR, 4
; o 0G346 607464346060 BCD 1 (W)
00347 +000001000000 CNED 0CT 1000000 PROGRAM
00350 000000005300 OCLLAR BCD 1000030 CONSTANTS
0C351 +000006000001 ONEA oCcT 1

END OF THE SAP MAIN SEGMENTY TO INPUT.




28

0C352
$0353
00354
GC355
00356
0u3L7
GC36C
C03061
00362
00363
CG3o6u
00365
00366
C0367
00370
06371
co3s72
ou373
0u31u
Gu37s
0U376
0u377
0u400
004G
00u02
CouG3
coulou
CLuds
o0LU6
Coug7
004 1¢C
0oul1
0Ccy12
oou13
004y
00415
00416
oou17
00420
oou21

00422 -

00423
o0k24
0Gu25
00u26
ocu27
0043¢C
00431
00432
00433
00434
00435

-0

63LGG
034G0
03400
000U
560C0
1066¢
73400
56006
53400
53400
500C0
10000
00001
000061
75400
763C0
60001
00005
73400
56000
60001
0001y
73400
00061
34000
020660
02000
34000
$2600
02660
¢200C
000062
76700
60100
00001
00000
02000
63400
63400
60000
56000
40000
76300
60100
60500
53400
53400
53400
76000
12000
60000
02000

FOOON~FOOOOOO=NONFOOFCOOOCOCOENNNN—-—awOOFFfrCOFr~CRNCOCEN—

17736
77755
1776
r7the
77760
6292753}
CLuGs
11056
17157
777435
7177481
0Cs367
0C367
0C370
00060
000006
00373
00401
00000
717776
00377
00401
0C000
oCu17
00515
0C405
0CL15
0C516

Calo
oCcutl
0Cu17
0CLuo
06006
TT742
oGu15
00370
00455
77760
77757
77756
77743
77742
00000
77755
77743
77726
77736
77735
00012
00436
77734
00001

LCCCB

Leoccc

LOCCD

LoCCt

LOCCF

LXA

LOG
TXI
TXL
PDX
TXL
CAS
TRA
TRA
CAS
TRA
TRA
TRA
TXH
ALS
STO
TXI
TXH

SXD
SXD
STQ
L0Q
ADD
LLS
STO
S12
LXD
LXD
LXD

TMI
STZ
TRA

THIS IS SUBROQUTINE CHRCTR. IT STORES SUCCESSIVE
CHARACTERS FROM THE CARD AT LCCATICN WORL, REACS
SUCCESSIVE CARDS INTO THE ARRAY RECGORD, AND PRINTS
$¢ TYPE CARDS. THE FIRST CHARACTER FRCM A NEW CARD
I5 STORED IN WORD WITH A MINUS SIGN.

TEMP=94 1
TEMP—10,2
U TEMP=-1T7,4
TAG
I
LOCCG I = 0 MEANS READ A CARD
0.2 I = I IN INDEX B.
Q HAS UNUSED CHARACTERS FRCM BEFORE.
KKy} PICK UP CHARACTER COUNTER CF WORD.
SIGN.4 ZERO UNLESS CON $UATA CARD.
ALF
*4+2 ZERO MEANS NOC ALPHABETIC.
w+loliy]
+l,4,1 C = 2 IF NOT IN ALF MODE.
0,0
6 ONE CHARACTER FROM MQ TC AC.
I'+]"'] KK = KK + 1
LOCCCy 1,45 DCNE WITH WCRD IF KK QOVER 5.
Gyl RESET KK 70 ZERO.
RECCRD,2
#+1,2,1 RAISE I BY ONE.
42,2412 DONE WITH CARD IF I OVER 12.
0y2 RESET I TO ZERO.
LOCCF L,y 1 GO STORE CHARACTER IF IN ALF MODE.
BLDG "HUNT FOR BLANK.
*42 IS NOT BLANK.
LOCCE 1S BLANK.
DOLDG HUNT FCR $ CHARACTER.
®+2 IS NOT $ CHARACTER.
LOCCD IS $ CHARACTER.
LOCCF GO STORE THE CHARACTER.
PRINT 4,2 TWO $ SIGNS MEANS PRINT CARD.
6 SAVE THE 1ST $ CHARACTER AT TAG.
TAG
LOCCE i,y C =C + 1 FOR $ CHARACTER.
L0OCCB,2,0 CCNTINUE PROCESSING IF NOT THE
LOCCG END OF THE CARD. OTHERWISE READ
1,2 A NEW CARD.
KKyl
Q SAVE CHARACTERS LEFT IN MQ.
SIGN RETURN
TAG T0 THE
0 CALLING
WORD PROGRAM.
SIGN
TEMP-17,4
TEMP-9,1
TEMP-10,2
IS TAPE CHECK CN.
*+3 IF MINUS THIS IS A NEW CARD.
RTT RESET ERROR COUNT.

o4 RETURN TO THE CALLING PROGRAM.

-

880T-W



E-1088

00436 -0 53400 2 77734 LXD RTT,2 COUNT REREADS.

00u37 -3 00004 2 00uy2 TXL #43,2,4

00u4C G 07400 4 0056k TSX ERROR,4 OVER 5 REREADS.

00u41l 607451636334 R BCD 1 (RTT)

oouL2 U 76400 0 00207 BST 7 REREAD THE LAST RECORD (CARD).
OG443 1 00001 2 0Ouuy TXI #+1,2,1

CCuuy -0 63400 2 77734 SXD RTT,2

ocuuS 0 G2000 O 0045y TRA LOCCG-1

COMES HERE IF IT IS A $$% CARD

GO4L6 O 76600 G 00206 PRINT WTD 6

00447 -0 73400 1 00000 PLX 041

0045C 0 70000 O 0C636 CPY BLANK

00451 0 70000 1V 77776 CPY RECORD, 1

CO452 1-00001 1 00453 TXI #41,1,1

00u53 -3 00013 1 00451 TXL #-2,1,11

00454 ¢ 60000 0 777u2 STZ TAG INITIALIZE TAG.

00455 0 60000 O 77757 LOCCG STZ KK INITIALIZE KK.

00456 0O 53400 2 OCuuT LXA PRINT+1,2 SET INDEX TO COPY LOOP AT ZERO.
00L5T 0 S3400 4 OO0uu7 LXA PRINT+1,k

00460 0 76200 0 0C207 RTD 7 READ A NEW CARD.

00461 © 70000 2 77776 READ CPY RECORD,2

00462 0 (G2C00 O 00u70 TRA LOCCH NORMAL

G0k63 0 02000 0 00300 "TRA LOCCK END OF FILE

00464 U 50000 0 GCo36 CLA BLANK END OF RECORD

00465 3 00C13 2 QOuTe TXH LOCCJ,2,11 FILL IN SHORT RECORDS WITH BLANK
0Gu66 0 60100 2 77776 STO RECORD,2 WORDS.

0C467 1 00COT 2 0CGU6S TXI #-2,2,1

COH70 1 00001 2 00471 LOCCH TXI #+1,2,1

CuuTl -3 00C13 2 0OOu6l TXL READs2,11 FINISHED IF INDEX B IS GREATER THAN
G0L72 -0 53400 2 00401 LOCCJ- LXD LOCCC,2 SET I = 1. 1.
Gu473 0 50200 0 77757 CLS KK PICK UP MINUS ZEROC.

GCu74 0O 60100 O 77743 STO SIGN

0ou7S U 76600 0 00333 16D

00476 0 56000 0 777706 LDQ RECORD

00477 0 02000 0 0¢362 TRA LOCCA

00500 O 76600 0 00206 LOCCK WTD 6 PRINT END OF FILE AND CALL MONITOR.
005C1 -0 53400 1 00576 LXD FOUR,1 ‘

00502 0 70000 1 0G515 CPY QUT+U,1

C05G3 2 00001 1 00502 TIX =-1,1,1

00504 0 76200 0 00221 LOCOUT RTB | STANDARD

00505 0 76000 0 00140 SLF LEWIS RESEARCH CENTER

00506 0 70000 0 00000 CPY O MONITCR

00507 0 70000 O 0OOON cPY 1 CALLING

00516 0 02000 0 00000 TRA O SEQUENCE.

00511 6G2545246046 our BCD 4 END OF FILE ON TAPE 7.

00512 266026314325
00513 604645606321
00514 472560073360
00515 000006000060 BLODG BCD 100000
00516 000000000053 DOLDG BCD 100000$

END OF THE SAP SUBROUTINE CHRCIR.



30

00517
00520
00us21
C0522
0523

00524
00525
00526
00527
005306
00531
00532
00533
00534
00535
00536
00537
GOS40
00541
00542
00543
0054y
00545
00546
00547
0550
00551
00552
00553
00554
00555
00556
00557
00560

00561
00562
00563

U 50000 € 0G3uy
0 60100 0 77752
U 60000 0 77714
0 600600 0 77751
0 02000 4 00001
0 56000 4 00001}
-0 50000 0 77755
G 60100 0 77755
0 53400 2 00351
-G 75400 0O 00000
-0 76300 0 00006
0 10000 0. 00541
0 34000 0 77755
1 00001 2 00530
G 02000 O 00537
1 00001 2 00530
0 50000 0 77755
0 02000 & 00002
0 50000 4 00002
-0 73400 1 00000
-2 02000 1 00537
0 50000 0 77755
0 40200 0 00562
-0 12000 0 00537
0 50000 O 77755
0 40200 O 00351
~0 32000 0 00563
0 40200 O 00561
0 02000 1 00556
0 02000 O 00557
~0 12000 0 00537
¥ 00001 2 00537
-0 12000 0 00556
1 00002 2 00537
+000000000011
+000000000012
+000000007717

CLEAR

COMP AR

LOCDA

LOCDB
LococC

LOCDD

LOCDE

LOCDF

NINE
TENA
MASK1

CLA

$TZ
STZ
TRA

THIS IS SUBROUTINE CLEAR. IT INITIALIZES
NECESSARY PARAMETERS FOR SUBROUTINE STORE.

ONED

Jd SET J EQUAL TO ONE.

VAR CLEAR VAR{1).

MSHIFT CLEAR MSHIFT.

Tob RETURN TO CALLING PROGRAM

END OF THE SAP SUBROUTINE CLEAR.

THIS IS FUNCTION COMPAR. IT EXAMINES THE CURRENT
CHARACTER AND TESTS IT AGAINST THE CHARACTERS
FOUND IN THE ARGUMENT. ALPHABETIC AND NUMERIC
SPLITS ARE MADE IF THE CHARACTER IS NOT FOUND

IN THE ARGUMENT. THESE TESTS ARE CCUNTED AND

THE NUMBER LEFT IN INDEX 2 CORRESPONDS TO THE
SUCCESSFUL TEST. IF NO TEST IS SUCCESSFUL

THEN INDEX 2 CORRESPONDS TO THE TCTAL TESTS +l.

Tol USE FIRST ARGUMENT IN CALLING
WORD SEQUENCE 'AS THE TEST KORD.
WORD SIGN OF WORD NOW PLUS.
ONEA,2
0,0
6 PULL IN 1ST TEST CHARACTER.
LOCDD DONE IF ZERO.
WORD CHECK TEST WORD AGAINST CARD
LOCDA, 2,1 CHARACTER.
LOCDC EQUAL.
LOCDA, 2,1 NOT EQUAL. GET NEXT TEST
WORD CHARACTER.
224 PROGRAM RETURN.
2,4 USE SECOND ARGUMENT IN THE CALLING
0y SEQUENCE ({(DECREMENT) AS THE TEST
LOCDC, 11,1024 FOR ALPHABETIC—-NUMERIC SPLIT.
WORD LOOK FOR NUMERIC.
- TENA
LococC NEGATIVE MEANS NUMERIC.
WORD LOOK FOR ALPHABETIC.
ONEA
MASK1
NINE
*+3,1
LOCOF
LOCDC
LOCDC,y 2,1 ADJUST INDEX B ACCGCRDING
®=1] TO JUNK OR ALPHABETIC.
LOCDC,2,2
11
12
7717

END OF THE SAP SUBROUTINE COMPAR.

QONT=1T



3B

E-1088

00564
00565
00566
00567
00570
00571
00572
00573
00574
00575
00576
00577
00600
00601
00602
00603
00604
00605
00606
00607
00610
00611
00612
0613
00614
00615
00616
00617
00620
00621
00622
00623
00624
00625
00626
00627
00630

00631
00632
60633
00634
00635
C0636
00637
00640
coou1l
00642
00643
0064
casus
Cosks
ooo6u7
00650
00651
00652

76600
70000
53400
34000
00001
00004
32000
73400
70000
00004
00021
02000
70000
70000
70000
70000
00001
70000
00001
00014
76600
56000
20000
73400
53400
00000
7177
00007
56600
77300
60000
766C0
70000
00001
70000
02000

I |
W OOC=moOCOoOO

CONCCOOOD—~=WOOCOOWM~ONOCCOOoO

50000.

OONOOO-—ONN-N—-OOO—-'-A—tOOOOONNNNO——O--&'O:‘

00001
00206
00001
00655
oouyt
00601
00604
00654
00000
00655
00577
00575
0060k
00631
00632
00633
00636
0060k
Ty
00610
00606
00333
17757
00655
00000
77760
00620
00620
00621
00656
0004y
7747
00206
00636
00625
77747
00504

314343252721
436023302151
212363255133
253360606060
665146452733
606060606060
602533606060
266051214527
452760465160
632122432533
222526465125
6046646360u6
604431626231
517060314560
633162622160
256TL474L6U533
536063704725
454660254563

ERROR

LOCEC

FOUR

LOCEA

LOCEB

LOCED

BLANK

THIS IS SUBROUTINE ERROR. IT IS CALLED IF AN
ERROR WAS DETECTED ON ANY OF THE INPUT CARDS.
IT EXITS VIA THE LEWIS RESEARCH CENTER MONITOR.

1,4

6

Iyl
THREE, 1
R

LOCEA, 1,1
LOCEA+3, 1,4
BLOT

0,2
LONG+2,2
*4+1,244
#—=2,24 17
LOCEB
LOCED
LOCED+1
LOCED+2
LONG-13
#—-1,1,1
RECORD+1,1
'+]|]9]
#-2451412

KK
THREE
Gyl

1,2
*42,1,0
#+1,2,-1
#+1,2,7
ASTR
3641
TEMP

;6

LONG~13
#¥—142,1
TEMP
Locour

1ILLEGA
1L CHAR
TACTER.
1.

TWRONG.
1

1 E.

1F RANG
ING OR
1TABLE.
I1BEFORE
1 our O
1 MISSI
IRY IN
ITISSA
1EXPON.
1$ TYPE
INO ENT

GET ARGUMENT FOR PRINTOUT.

PRINT TYPE OF ERROR.
PREPARE TO PRINT SERIES OF BLANKS.
TEST FOR TYPE SPLIT.

(RTT)} USES 7 BLANKS.

ERROR TYPE WAS GREATER THAN R.
SET INDEX FOR =LONG= PRINT.
COPY NON-STANDARD PRINTOUT.
INCREMENT BY FOUR.

FINISHED IF OVER 17.

ERROR TYPE WAS LESS THAN R.
COPY THREE MORE BLANKS.

LOOP.
COPY THE CARD IMAGE.

PREPARE AN INDEX FOR SHIFTING THE
ASTERISK. MULTIPLY BY SIX.

REDUCE I BY ONE IF KK IS ZERC.
SET I FOR LOCPING.

SHIFT ASTERISK.

COPY A SERIES OF BLANKS.

LOOP.

COPY * SIGN IN PROPER LOCATICN.

PROGRAM DATA CONSTANTS.

31



32

00653
Co654
00655
00656

00657
00660
00661
00662
00663
00664
00665
00666
00667
00670
00671
00672
00673
00674
00675
00676
00677
00700
00701
00702
00703
00704
00705
00706
00707
00710
007N
00712

00713

L5L660442145
+000007000000C
+000003000001

606060606054
-0 63400 4 77733

0 50000 0 77752

0 62200 0 00705

0 53400 2 00351

0 53400 1 00351
-0 50000 2 00000
-0 10000 0 00667

0 02000 0 o07NN

0 62200 0 00702
-0 32000 0 00713

0 40200 0 77752

0 40200 0 00347
-0 10000 0 00702
-0 75400 2 00000
-0 73400 & 00000

0 50000 v 77715

0 34000 4 00000

G 02000 0 00702

0 02000 0 00703

1 00000 2 00663

1 00001 4 00704

1 00001 1 00705
-3 00000 1 00676

0 07400 4 00517

0 50000 2 00000

0 60100 0 77750
-0 53400 4 77733

0 02000 u 00001
+377777000000

LENG
BLOT
THREE
ASTR

LOOK

LOCFA

LOCFB
LOCFC

LOCFD

LOCFE
LOCFF

LOCFG

MASK2

8CD
oCT
ocT
BCD

INC MAN
70006000
3000001

1 *

END OF THE SAP SUBROUTINE ERROR.

THIS IS SUBROUTINE LOOK. IT SEARCHES THE TABLE

FOR THE NAME

STORED AT LOCATION VAR. IF FOUND,

THE ACC 1S NON-ZERO AT THE RETURN.

TEMP-12,4
J

LOCFE
ONEA,2
ONEA,
g2
42
LOCFG
LOCFD
MASK2

J

ONED
LOCFD
0,2
0'“
VAR+1,1
%ol

LOCFD

. %42

LOCFA—-1,2, %%
#+1yk,y 1
#+1,1,1
LOCFBy 1y%n
CLEARs Y

*ny2

IL0oC
TEMP—-12,4
1,4

377777000000

SAVE INDEX REGISTER C.
SUBROUTINE.

JK = 1 IN INDEX B.

J1 = 1 IN INDEX A.

CAL TABV(JK).

IF ZERO, NO ENTRY WAS FOUND FOR
THIS VARIABLE. EXIT WITH ZERO IN
INDEX B. DECREMENT HAS NEXT

ENTRY LOCATION. SAVE THE DECREMENT
ONLY. CHECK ENTRY LENGTH.

IF NOT THE SAME, LOOK AT NEXT ENTRY.

JM = JK IN INDEX C.
SEE IF VAR AND THIS
ENTRY AGREE.
IF NOT SO, GO TO NEXT ENTRY.
IF SO, CHECK REST CF 'NAME.
IF NOT SO, GO YO NEXT ENTRY.
RAISE JM BY ONE.
RAISE J1 BY ONE.
FINISHED IF J1 IS GREATER THAN J.
CLEAR IF THE ENTRY AGREES.

SAVE COMMON INDEX AT ILOC.
PREPARE TO RETURN.
RETURN TO THE CALLING PROGRAM.

END OF THE SAP SUBROUTINE LOCK.




‘£-1088

00714

00715
00716
00717
00720
00721
00722
00723
00724
00725
00726
00727
00730
00731
00732

00733
00734
0073s
00736

00737
00740
co7ul
00742

00743

007hY4
00745
00746
007k7
00750
00751
00752
00753
00754
00755
00756
00757

00760
00761
00762
00763

00764
00765
00766

-0

ccooccooococCcocooo

[eNoNoN ]

0
-0

63400 4 77723
07400 4 01216
Q7400 4% 00352
12000 0 0C721
Q7400 4 01377
10000 0 00724
36100 0 00776
60100 0 77755
07400 4 00524
11374000000

02001 2 00734
02000 0 00733
02000 0 00715
02000 0 00737
60000 O 77716
07400 4 00657
10000 0 00741
53400 2 77750
02000 0 00770
07400 4 00657
10000 O 00744

0 07400 4 00564
607463346060

0 07400 4 01453

0 07400 4 00352
0 07400 4 00524
340000000000

0 02002 2 0075x
0 02000 O 00774
0 02000 0 00774
0 02000 0 00743
0 07400 4 00352
0 12000 0 00756
0 07400 4 01377
0 07400 4 00524
611300000000

0 02001 2 QU765
0 02C00 O 0076u
0 02000 0 00161
0 60000 0 77716
0 50000 C 77714
0 40200 0 00351
0 40100 0 77750

NAME

LOCGB
LOCGC

LOCGE

LOCGF

LOCGG

ERRT

LOCGH

LOCGY

LOCGK

TSX
TZt
LXA
TRA

TSX
TNZ
TSX
8CD

TSX

TSX
TSX

TRA
TRA
TRA
TRA
TSX
TPL
TSX
TSX
B8CD

TRA
TRA
TRA
STz
CLA

ADM

33

THIS IS SUBROUTINE NAME. IT IS USED TC
CORRELATE NAMES FROM INPUT CARDS WITH INTERNAL
MEMORY LOCATIONS BY REFERRING TO THE TABLE.

TEMP-20,4 SAVE INDEX C.
GET THE REST OF THE VARIABLE NAME. STCP AT ANY
NON ALPHANUMERIC CHARACTER.

STORE, 4

CHRCTRy 4

42

TEST 4 COMMA MAY BE NEEDED.
*+3 LOOK FOR ZERO. IF ZERO, MAKE IT
OH A LETTER O.

WORD

COMPAR 4

1/=(000

*4'612']

LOCGF JUNK OR OPERATCRS
LOCGB NUMERIC OR ALPHABETIC
LOCGG { SIGN

1L0C = SIGN

GO TO THE TABLE LOOKUP ROUTINE IF AN = SIGN
OR AN OPERATOR WAS FOUND.

LOOK, 4 FIND THE NAME IN TABLE.

ERRT NAME WAS FOUND IN TABLE IF NCN-ZERQ.
ILOC,2

LOCGL

GO TO THE TABLE VARIABLE LOOKUP ROUTINE IF A
{ SIGN WAS FOUND.

LOOK, 4

LOCGJ

ERRCR, &4

11

CONVERT THE INDEX TO BINARY.

BINARY, 4

GET THE NUMERICS FOR THE INDEX TO THE VARIABLE.
CHRCTR 4

COMPAR, &4

1300000

#+5492,2

ERRC JUNK

ERRC ALPHABETIC

LOCGH NUMERIC

CHRCTR, 4 ) SIGN. GET NEXT CHARACTER.
®+2 MINUS MEANS FROM NEW CARD.
TEST»4 COMMA MAYBE NEEDED.
COMPAR, 4

1/=0000

#4542, 1

LOCGK OPERATORS

ERRL ALPHABETIC AND NUMERIC
ILOC! = SIGN

VAR COMPUYE STORING INDEX.
ONEA

ILOC




34

00767
00770
00771
00772
00773

Co7ry
00775
00776

00777
01000
01001
01002
01003
01004
01005
01006
01007

01010
o1om
01012
01013
0101y
01015
01016
01017
01020
olo021
01022
01023
01024
01025
01026
olo2v
01030
01031
01032
01033
01034
01035
01036
01037
01040
olo41
01042

!

0 73400 2 00000
0 63400 2 77737
0 50000 0 77710
U 53400 4 77723
0 02000 & 00001
0 07400 4 00564
6CTU23346060

000000000046

0 63400 4 77720
0 63400 4 77745
0 60000 O 777uy
0 60000 0 777u6
0 60000 0 77715
0 60000 O 77747
0 50000 0 01214
0 62100 0 01035
0 02000 0 01013
0 07400 4 00352
0 12000 0 01013
0 07400 4 01377
0 G7400 4 0052y
332561000000

0 02002 2 01024
0 02000 0 01113
0 02000 0 01174
0 02000 0 01032
0 02000 0 01113
0 02000 0 01050
0 50000 0 77745
0 10000 0 01027
0 07400 4 0056u
607T4U5346060

0 60000 G 777u5
0 60000 0 77753
G 02000 0 01010
0 50000 0 77753
0 40000 0 00351
0 60100 0 77753
0 02000 0 00000
0O 07400 & 01453
0 10000 0 01010
0 50000 0 77746
G 40000 0 00351
0 60100 0 77746

LOCGL

ERRC

QH

NUMBER

LOCHA

LOCHB

LOCHC

LOCHD
LOCHD!

LCCHD2

PAX
SXU
CLA
LXD
TRA
TSX

B8CL
BCD

092 STCRE ADORESS AT UECREMENT wITHOUT

JK2 ACCUMULATOR CVERFLOW.

ILOCT

TEMP-20,4 RESTCRE INDEX C.

U RETURN TCO CALLING PRCGRAM.,
CONSTANTS AND ERROR CALL.

ERRORy 4

1 {C)

1000060 5 ZEROS AND ONE ©

END OF THE SAP SUBROUTINE NAME.

THIS IS SUBROUTINE NUMBER. IT IS USED TO
ASSEMBLE NUMERIC DATA FROM CARDS. ALL VALUES ARE
TREATED AS FLOATING POINT NUMBERS IN THIS ROUTINE.

TEMP-23,4 SAVE INDEX C.

KNT2,4 INITIALIZE

KNT3 THE SUBROUTINE

KNT1 . BRANCH PARAMETERS.

KNTL

TEMP

LOCHR INITIALIZE THE TRANSFER AT LOCHD TO
LOCHD LOCHD Y.

LOCHB

CHRCTRy 4

LOCHB

TEST,4

COMPAR, 4

1.E/000

*4742,2

LOCHK JUNK OR AN QOPERATOR

ERRE ALPHABETIC

LOCHC NUMERIC

LOCHK SLASH

LOCHE E

KNT2 DECIMAL POINT. )

#+3 ZERO MEANS THIS IS THE SECOND POINT.
ERROR, 4

T (N)

KNT2

NEXP

LOCHA

NEXP COUNT THE NUMBER OF DIGITS BEHIND
ONEA THE DECIMAL POINT IF THERE IS ONE.
NEXP

*» EITHER LOCHD! OR LOCHD2.

BINARY, 4 CONVERT THE DIGIT TO BINARY.
LOCHA DO NOT COUNT LEADING ZEROS.

KNT1 COUNT THE TOTAL NUMBER OF DIGITS.
ONEA

KNT1



E-1088

01043
orouy
01045
0rou6
01047

01050
01051
01052
01053
01054
01055
01056
01057
01060
01061
01062
01063
01064
01065
01066
01067
otoro
01071
01072
01073
o107y
01075
01076
olorr
01100

01101
01102
01103
01104
01105
01106
01107
01110

o111
01112
01113
o111y
01115
01116
o117
01120
orizt
01122
01123
01124

01125
01126
01127
0113¢C
o1
01132

i

0 40200 0 00562
0 10000 0 01010
0 50000 0 01215
0 62100 0 01035
0 02000.0 01010
0 50000 0 77746
0 10000 0 01064
0 07400 4 00564
607462346060

0 50000 O 7774y
0 02000 O 01057
0 50200 0 777u4
0 10000 0 01111
0 60100 O 77747
0 50000 0 77715
0 10000 0 01176
0 63400 2 77715
0 07400 4 00352
G 12000 0 01067
0 07400 4 01377
0 07400 4 00524
204061330000

0 02002 2 01101
0 02000 0 011N
G 02000 0 01176
0 02000 0 01101
0 02000 0 O1t76
0 02000 0 01111
0.02000 0 01056
0 02000 0 01054
0 50000 0 77747
0 76700 0 00002
0 40000 0 77747
0 76700 0O 00001
0 36100 0 77755
0 60100 O 77747
0 63400 2 777u4
0 02000 0 01064
0 50000 O 77744
0 10000 0 01176
0 50000 0 77745
0 10000 0 01116
G 60000 0 77753
0 50000 0 77746
0 40200 0 00562
0 12000 0 01122
0 75400 O 00000
0 40200 O 77753
0 40000 O 777u7
0 60100 0 77753
0 50000 0 77714
0 10000 0 01172
0 62100 0 01203
0 77100 0 00017
0 50100 0 01204
0 30000 ©C 01204

LOCHE

LOCHF

LOCHG

LOCHH

LOCHJ

LOCHK

sus
TNZ
CLA
STA
TRA

CLA

TSX
BCD
CLA
TRA
CLS
TNZ
STO
CLA
TNZ
SXD
TSX
TPL
T5X
TSX
BCD
TRA
TRA
TRA
TRA
TRA

TRA
TRA

CLA

TENA

LOCHA

LOCHS PULL THROUGH REMAINING DIGITS.
LOCHD TURN OFF ACCUMALATION CF DIGITS.
LOCHA

COMES HERE WHEN THE EXPONENT FIELCDC IS

KNT1 ENCOUNTERED.

LOCHH THERE MUST BE AT LEAST ONE DIGIT
ERROR 4 BEFORE THE E OF AN E FORMAT NUMBER.
1 (S)

KNT3 SEE IF EXPONENT DIGITS HAVE ARRIVED.
=42

KNT3 SEE IF EXPONENT DIGITS HAVE ARRIVED.
LOCHK~-2 NON ZERO MEANS SIGN IS OPERATOR.
TEMP STORE SIGN OF EXPONENT.

KNTH

ERRF NONZERC MEANS MORE THAN 1 EXP SIGN.
KNTU4,2 MAKE NOZERO.

CHRCTR, 4

*42

TEST,4

COMPAR, 4

1+-/.00

*48,2,2

LOCHK~2 OTHERS

ERRF ALPHABETIC

LOCHJ NUMERIC

ERRF CECIMAL

LOCHK~2 SLASH

LOCHG MINUS

LOCHF PLUS

CONVERT THE EXPONENT TO BINARY.

TEMP

2

TEMP

1

WORD

TEMP

KNT3,2 RECORD FACT FOR SECOND SIGN.
LOCHH

COMES HERE WHEN AN OPERATCOR WAS FCUND.

KNT3 TEST FOR THE PRESENCE CF EXPONENT.
ERRF ZERO MEANS NO EXPONENT CAME.

KNT2 . .

*42

NEXP

KNT1 - SEE IF MORE THAN TEN NUMBERS HAVE
TENA BEEN CONVERTED.

*42 IF SO, USE THE DIFFERENCE IN THE
0,0 COMPUTATION OF THE EXPONENT.

NEXP

TEMP

NEXP

MANTISSA IN VAR AND THE EXPONENT IS IN NEXP.
VAR

= LOCHG SHORT CUT IF ZERC.

K1
15
K2
K2

35



36

01133 0 60100 O 77714 STC VAR
01134 0O 76000 0 00000 CLM
01135 -0 50100 0 01203 ORA K1
01136 0 30000 O 77714 FAD VAR
01137 -0 77300 0 00010 RGL 8
01140 0 76000 0 00010 RND
61141 -0 50100 O 01205 ORA K3
01142 Q 60100 O 77714 STO VAR

o 01143 O 50000 0 77753 CLA NEXP

R 01144 0 10000 0 01171 TZE LOCHP IF ZERO, NO EXPONENT COMPUTATION

- 01145 -0 53400 2 00347 LXD ONED.2 NECESSARY.
01146 0 56000 0 01202 LDQ FLOATI PUT A ONE IN THE MQ.
01147 O 76000 O 00001 LOCHL LBTY EXPONENT IS IN ACCUMULATOCR.
01150 0 02000 0 01157 TRA LOCHM
01151 3 00006 2 01200 TXH ERRV42,6 EXPONENT GREATER THAN 64
01152 0 60100 0 77711 STO VAR-3
01153 0 26000 2 01214 FMP TAB+1,2 COMPUTE POWERS COF TEN.
01154 0 60100 O 77712 STO VAR-2
01155 0 56000 0 77712 LDQ VAR-2
01156 © 50000 O 77711 CLA VAR-3
01157 0 77100 O 00001 LOCHM ARS 1 CHECK NEXT BIT OF EXPONENT.
01160 0 10000 0 01162 TZE LOCHN
01161 1 00001 2 Otiuy TXI LOCHL,y2,1
01162 —0 12000 0 01165 LOCHN TMI LOCHO IF NEGATIVE, PERFORM DIVISION.
01163 0 26000 0 77714 FMP VAR IF POSITIVE, PERFORM MULTIPLICATION.
0Ytou 0 02000 0 01172 TRA LOCHQ
01165 -0 60000 O 77712 LOCHGC STQ VAR-2
01166 0 50000 O 77714 CLA VAR
01167 0 24100 0 77712 FDP VAR-2
01170 -0 600G0 O 77714 STQ VAR
O¥171 0 50000 O 77714 LCCHP CLA VAR
01172 -0 53400 4 77720 LOCHQ LXD TEMP-23,4 RESTORE INDEX C.
01173 0 02000 4 00001 TRA 1,4 RETURN TO CALLING PRCGRAM.

THESE ARE THE ERROR CALLS FOR SUB NUMBR.
01174 O 07400 4 00564 ERRE TSX ERRORs U4

01175 ~ 607425346060 BCD 1 (E)
01176 O 07400 4 00564 ERRF TSX ERROR, 4
01177 607426346060 BCD 1 (F)

01200 O 07400 4 00564 ERRV TSX ERRORy &

01201 607465346060 BCD 1 (V)
01202 +201400000000 FLOAT1 DEC 1.
THESE ARE THE OCTAL CONSTANTS TO BE USED WITH
01203 +233000000000 K1 OCT 233000000000 THE DBC RCUTINE.
01204 +252000000000 K2 0CT 252000000000
) 01205 +000400000000 K3 OCT 400000000
THIS IS THE FLOATING PT. TABLE USED IN DBC
01206 +353473426555 DEC 1E+32 CONVERSION.
01207 +266434157116 DEC 1E+16
01210 +233575360400 DEC 1£+08
01211 +216470400000 DEC 1E+0Y4
01212 +207620000000 DEC 1E+02
01213 +204500000000 TAB DEC 1C.

01214 0 00000 O 01036 LOCHR HTR LOCHD1
01215 O 00000 C 01040 LOCHS HTR LOCHD2

END OF THE SAP SUBROUTINE NUMBER.

880T-d



E-1088

01216
01217
01220
01221
01222
01223
01224
01225
01226
01227
01230
61231

01232 -

01233

‘01234

01235
01236
01237
01240
01241

01242
01243
0124y
01245
01246
01247
01250
61251
01252
01254
01254
01255
01256
01257
01260
01261
01262
01263
01264
01265
01266
01267
01270
01271

ccCccoc

i
CCOCCONCOCOOOCOOOOO0OO

63400 1 77732
63400 .2 77731
53400 1 77752
53400 2 77751
00036 2 01227
60000 0 77751
00001 1 01225
60000 1 77715
02000 0 01221
56000 0 77755
77300 2 00036
60000 0 77740
50000 0 77740
60200 1 77715
00006 2 01235
63400 2 77751
63400 1 77752
53400 V 77732
53400 2 77731
02000 4 00001
63400 4 77730
50000 0 00707
62100 0 01343
62100 0 01352
62100 0 01370
62100 0 01371
62100 C C€1355
62100 0 01347
50000 0 00347
60100 0 77752
500G0 0 01263
60100 G 77714
07400 4 00657
63400 2 17727
60006 0 77747
07400 4 00352
07400 4 00524
3600G000000
02002 2 01271
02060 0 01301
02000 0 01261
02000 0 01301
60000 0 77747
02000 0 01300

STORE

LOCJA

LOCJB

TABLE

LCCKA

LOCKB

SXD
SXD
LXD
LXD
TXL
STZ
TX1
STZ
TRA
LoQ
RQL
STQ
CAL
ORS
TXI
SXD
SXD
LXD
LXD
TRA

SXD
CLA
STA
STA
STA
STA
STA
STA
CLA
STO
CLA
STO
TSX
SXO

TSX
TSX
8CD
TRA
TRA
TRA
TRA
STZ
TRA

37

THIS IS SUBROUTINE STORE. IT STORES CHARACTERS
AT THE ARRAY VAR,

TEMP-13,1
TEMP-14,2
MSHIFT,2
L0CJ4B,2,30
MSHIFT
l+‘,,91
VAR+1,1
LOCJA
WORD

30,2
TEMP-T7
TEMP-T7
VAR‘f‘p]
*+1,2,6
MSHIFT,2
TEMP-13,1
TEMP-14,2
Tk

SAVE INDEX A.

SAVE INDEX B.

PUT J INTO INDEX REGISTER A.
LOAD INDEX B WITH MSHIFT.
RESET MSHIFT IF IT IS OVER 30.

RAISE J BY ONE IF MSHIFT IS CVER
MAXIMUM.

PUT WORD IN MQ TO BE SHIFTED.
SHIFT WORD THE CORRECT NUMBER OF
PLACES TO THE LEFT.

STORE THE CHARACTER AT VAR.
RAISE MSHIFT BY SIX.

SAVE MSHIFT.

SAVE J.

RESTORE INDEX A.

RESTORE INDEX B.

RETURN TO CALLING PRCGRAM.

END OF THE SAP SUBROUTINE STORE.

THIS IS SUBROUTINE TABLE. IT IS USED TO
CONSTRUCT A TABLE OF NAMES TO BE USED ON CARDS
AND THEIR MEMORY LOCATIONS RELATIVE TC ARG 2 OF
THE CALLING SEQUENCE.

TEMP-15,4
LOCFF
LOCKL
LOCKN
LOCKS—1
LOCKS
LOCKO
LOCKM+1
ONED

J
LOCKA+2
VAR
LOOK+4
TEMP~16,2
TEMP
CHRCTR, 4
COMPAR, 4
1,00000
#45,2,2
LOCKD+1
LOCKA
LOCKD+1
TEMP
LOCKD

SAVE INDEX C.
INITIALIZE ADDRESSES TO 3RD ARG + 1.

INITIALIZE J FOR TABLE LOOKUP.
GIVE IT AN IMPOSSIBLE WORD.

NO MATCH FOR IMPOSSIBLE WORD IN
THE TABLE GIVES NEXT FREE LOCATION.

JUNK
ALPHABETIC
NUMERIC
CCMMA

R M



Pt

38

0i272
01273
01274
01275
01276
oi2717

01300
01301
01302
01303
01304
01305
01306
01307
01310

01311
01312
01313
0131y

01315
01316

01317
01320
01321
01322
01323
01324
01325
01326
01327
01330
01331

01332
01333
01334
01335

01336
01337
01340
01341
01342
01343
013414
01345
01346
01347
01350
01351
01352

ocoocCcoco

50000
76700
40000
76700
40000
60100

[eReRaoNoNoNe]

77747
00C02
77747
00001
77755
77747

0 07400 4 00352
0 07400 4 00524
331361000000
0 02002 2 01312
0 02000 0 01373
0 02000 0 01373
0 02000 0 01272
0 02000 0 01365
0 02000 0 01315
0 50000 0 777u7
-0 76000 0 00003
0 60100 O 77747
0 02000 0 01300
0 07400 4 00517
0 07400 4 00352
0 12000 0 01321
0 07400 4 01377
0 10000 0 01332
0 07400 4 00524
617300000000
0 02001 2 01331
0 02000 0 01375
0 02000 0 01334
-0 63400 2 77753
-0 63400 2 77753
0 02000 0 01336
0 36100 0 00776
0 60100 0 77755
0 07400 4 01216
0 02000 0 01316
0 07400 4 Q0657
—0 10000 0 01367
-0 53400 1 77727
-0 53400 4 77727
0 50000 0 777u7
G 60100 1 00000
1 00001 1 01345
-0 53400 2 00347
0 50000 2 77715
0 60100 1 00000
1 00001 1 01351
-0 63400 1t 77727
¢ 60000 1 00000

LOCKC

LOCKD

LOCKE

LOCKF
LOCKG

LOCKH

LOCKJ

LOCKK

LOCKL

LOCKM

LOCKN

CLA
ALS
ADD
ALS
AOD
STO

CLA
SSM
STO
TRA

TSX
TSX

TPL
TSX
TZE
TSX
BCD
TRA
TRA
TRA
SXD
SXD
TRA

ACL

TSX
TRA

TSX
TNZ
LXD
LXD
CLA
STO
TXI
LXD

STO
TXI
SXD
sST1Z

CCMES HERE TO CONVERT THE ADDRESS TO OCTAL FOR
TEMP THE TABLE.

2

TEMP

1

WORD

TEMP

COMES HERE TO GET NUMERICS.
CHRCTR, 4

COMPAR 4

1.=/000

*571212

ERRA JUNK

ERRA ALPHABETIC
LOCKC NUMERIC

LOCKQ / CHARACTER
LOCKF = SIGN

COMES HERE IF A DECIMAL PT WAS FOUND.
TEMP DECIMAL PT

TEMP
LOCKD

COMES HERE IF AN = SIGN WAS FOUND.
CLEAR, 4
CHRCTR 4

*42

TEST,4

LOCKH

COMPAR,, 4

1/,0000

t+5,2,1

ERRG JUNK
LOCKJ ALPHABETIC OR NUMERIC
B,2 COMMA
By2 SLASH
LOCKK

COMES HERE TO STCORE CHARACTER.

OH REPLACE ZERO BY CHARACTER 0.
WORD

STORE. 4

LOCKG

COMES HERE AT END OF NAME.

LOOK, k4

LOCKR GOES TO LOCKR IF THERE IS AN ENTRY
TEMP-16,1 EQUAL.

TEMP-1644

TEMP

LALR STORE THE NAME IN THE TABLE.
*l'l",]y‘

ONED,y 2

VAR+1,2

*a, ]

s+1,1,1

TEMP-16,1

w#ny ]

880T1T-H




E-1088

01353
01354
01355
01356
01357
01360
01361

01362
01363
01364
01365
01366

01367
01376
01371
01372

01373
0137y
01375
01376

1 C0001
0 75400
0 62200
C 40200
0 40200
0 10000
0 12000

-0 53400
0 02000
0 02000
G 53400
G 02000

50000
63000
62100
02000

oocCco

FEONON OCOOoOFENN

oONNO

01354
00060
00000
77752
00347
01362
01346

77753
01366
01270
77730
00001

77747
00000
00000
01362

O 07400 4 00564
607421346060
0 07400 4 00564
607427346060

LOCKO

LOCKP

LOCK&

LOCKR

LCCKS

ERRA

ERRG

TRA

CAL
STP
STA
TRA

TSX
BCD
TSX
8CD

41,21
0,2

#Hgl

J
ONEL
LOCKP
LOCKM

REEXAMINE THE CUT OFF CHARACTER.
B,2

#43,2

LOCKSB CCMMA

TEMP-15,4 / CHARACTER

1,4 RETURN.

COMES HERE TO REPLACE NAME
TEMP
*ay2
w2

LOCKP

THESE ARE THE ERROR CALLS.
ERRCR, & -
1 (A)

ERROR, 4

1 (G)

ENDC OF THE SAP SUBROUTINE TABLC

39




40

01377
01400
01401
01402
01403
0140y
01405
01406
01407
0oiu10
[CRRR N
01412
01413
0Tk1y
0l415
01416
o7
01420
01421
01422
01423
01424
01425
01426
01427
01430
01431
olu32
01433
0143y
01435
01436
01437
01440
0Olu41
0iuy2
o143
Oluky
01445
VRRR Y]
Ol4u7
01450

01451
01452

-0 63400 4 77733
U 40000 O 00350
-0 12000 0 01440
0 07400 4 00524
0000060000000
0 02002 2 01410
0 02000 O Oluyu7
0 02000 0 01410
0 02000 0 01447
0 53400 1 Olu1y
3 00013 1 Ouu7
0 56000 1 77776
0 53400 2 01414
-0 75400 0 00000
-0 76300 0 00006
-0 60000 0 77725
-0 10000 O 011424
-0 50000 0 77725
—0 10000 O Olu1ly
0 50000 0 77755
1 00001 1 01411
0 56000 0 01452
0 60100 0 77724
-0 75400 0 00000
-0 76300 0 00006
-0 10000 O 01433
0 56000 0 77725
0 02000 0 01413
0 34000 0 77724
0 02000 0 01436
0 02000 O 01437
1 00001 2 01426
-3 00001 2 0147
0 60000 O 77757
-0 53400 1 01423
-0 63400 1 77760
0 50000 0 77776
0 60100 0 77756
0 50000 0 01451
0 60100 Q0 77755
-0 53400 4 77733
0 02000 4 00001
000000000073
735313000000

TEST

LocLC

LOCLD

LOCLE

LOCLF

LOCLG

LOCLH
LoCLY
LOCLA

LoCLB

COMMA
TSTI

THIS IS SUBROUTINE TEST. IT LCCKS AHEAD TC CLASSIFY
A NEW CARD. ACOMMA WILL BE PUT INTQ THE CURRENT
CHARACTER POSITION ONLY IF EITHER (1) THE NEXT

CARD BEGINS WITH A $ SIGN FOLLOWED BY SOME OTHER
CHARACTER OR (2) THE NEXT CARD BEGINS WITH AN
ALPHABETIC AND AN = SIGN IS FCUND AND IT PRECEEDS
ALL , AND & SIGNS ON THAT CARD.

TEMP-12,4 SAVE INDEX FOR RETURN.

DOLLAR TEST FOR A $ SIGN.

LOCLA POSITIVE MEANS NCT A $ SIGN.
COMPAR 4 IS THIS CHARACTER ALPHABETIC.
1000000

w4l ,2,2

LOCLB OTHERS

LocLC ALPHABETIC AND /

LOCLB NUMERIC

LOCLD,y 1 THE CHARACTER WAS NOT A $ SIGN.
LOCLB, 1,11 DONE IF WHOLE CARD SCANNED.
RECORD, !

LOCLD,2

0,0

6

TEMP-18

LOCLE

TEMP-18 SEE IF REST OF MQ IS ZERC.
LOCLD GET NEXT CHARACTER IF M@ IS NOT
WORD ZERQO.
LOCLC+1,1,1

TST1

TEMP-19

0,0

6

LOCLG

TEMP-18

LOCLD-1

TEMP-19

LOCLH

LocLJ

LOCLF,2,1

LOCLB, 2,

KK

LOCLE-1,1

1,1

RECORD

Q

COMMA SUBSTITUTE A CCMMA IF NEEDED.
WORD

TEMP-12,4

1ok RETURN TO THE CALLING PROGRAM.

100000,
1,$=000

END OF THE SAP SUBROUTINE TEST.

RROT=T



E-1088

01453
Qlu54
01455
01456
Otus57

01460

01461

01462
01463
Cluon
01465
01466
Oluo7

01476
01471
01472
01473
Cru7y
01475

Clu76
olury
015C¢C
01501
01502
01503
01504
01505
01506
01507

0isto
01511
01512
C1513

01514
G1515
G1516

|
ccocccaecoc coococococCc

i

| |
cooccao

ccCcoCcaoacocoo

¢
C
-0
0
G
o]

G

50000
76700
40000
76700
36100
60100
02000

50000
76500
50160
30000
60100
G20060

30000
76500
32000
76300
76700
G20060

53400
60000
50000
02000
c200¢
02000
76000
30000
60100
62000

50000
24100
600G0
02000

56000
26000
0200G0

77714
00002
77714
00001
77755
T4
00001

FOoOoOOCoOOoOo

7747
00022
01520
0152¢
1747
00001

FOOOOO

01520
0000C0
01517
036000
00022
0goe!

Fooococo

17754
77754
77747
C1506
G151y
01510
06002
e
77717
00C01

FOoOoOOoocoNnOON

717
77747
7717
00601

FOCCOCO

T
77747
015006

coo

01517 +GoO0O000TZTTT
0152C +233000000000

NASA-Langley, 1961

E-1088

BINARY CLA

FLT

ACCUM

LCCMA

LOCMB

FIXEL
cXP

ALS
ACD
ALS
ACL
STO
TRA

CLA
LRS
ORA
FAD
STO
TRA

UFA
LRS
ANA
LLS
ALS
TRA

LXD

CLA

STGQ
TRA

LGG
FNp
TRA

[ofvn )
ocy

THE FOLLOWING FCUR SUBROUTINES ARE USED TG
CONVERT DECIMAL DIGITS TO BINARY IN VAR,

FIX FLOATING POINT NUMBERS, FLOAT FIXED POINT
NUMBERS, AND FCRM ARITHMETIC RESULTS IN THE
PSEUDO ACCUMULATOR (ACC) FOR EACH OPERATION
ON A CARD.

VAR ACCUMULATE A SERIES CF BASE 10
2 CIGITS IN BINARY IN VAR.
VAR
i
WORD
VAR
1,4
TEMP CONVERT TO FLCATING PCINT THE
18 CONTENTS OF THE STCRAGE CALLED
EXP TEMP.
EXP
TEMP LEAVE THE ANSWER IN TEMP,
Tl
EXP CONVERT TG FIXED PCINT ThE CONTENTS
G OF THE ACCUMULLATCR.
FIXED
0
18 LEAVE THE FIXED POINT NUMBER IN
1ol THE ACCUMULATOR.
OPER,2 BRANCH FCR OPERATCR
OPER PREPARE FOR NEXT QPERATCR.
TEMP
*"572
LOCMB *
LOCMA /
MINUS
ACC PLUS
ACC NONE
1,4
ACC DIVIDE.
TEMP
ACC
Tyl
ACC MULTIPLY.
TEMP
LOCMA-2
ey
233000000CC0

ENC OF THE SAP SUBROCUTINES ACCUM, FIX, FLCAT.

41



NASA TN D-1092 )

National Aeronautics and Space Administration.

AN INPUT ROUTINE USING ARITHMETIC STATE-
MENTS FOR THE IBM 704 DIGITAL COMPUTER.
Don N. Turner and Vearl N. Huff. September 1961,
47p. OTS price, $1.25.

(NASA TECHNICAL NOTE D-1092)

An input routine has been designed for use with
FORTRAN or SAP coded programs which are to be
executed on an IBM 704 digital computer. All input
to be processed by the routine is punched on IBM
cards as declarative statements of the arithmetic type
resembling the FORTRAN language. The routine is
850 words in length. It is capable of loading fixed- or
floating-point numbers, octal numbers, and alpha-
betic words, and of performing simple arithmetic as
indicated on input cards. Provisions have been made
for rapid loading of arrays of numbers in consecutive
memory locations.

Copies obtainable from NASA, Washington

I. Turner, Don N.
II. Huff, Vearl' N.
III. NASA TN D-1092

(Initial NASA distribution:

49, Simulators and
computers.

NASA

NASA TN D-1092 ]

National Aeronautics and Space Administration.

AN INPUT ROUTINE USING ARITHMETIC STATE-
MENTS FOR THE IBM 704 DIGITAL COMPUTER.
Don N. Turner and Vearl N. Huff. September 1961.
47p. OTS price, $1.25.

(NASA TECHNICAL NOTE D-1092)

An input routine has been designed for use with
FORTRAN or SAP coded programs which are to be
executed on an IBM 704 digital computer. All input
to be processed by the routine is punched on IBM
cards as declarative statements of the arithmetic type
resembling the FORTRAN language. The routine is
850 words in length. It is capable of loading fixed- or
floating-point numbers, octal numbers, and alpha-
betic words, and of performing simple arithmetic as
indicated on input cards. Provisions have been made
for rapid loading of arrays of numbers in consecutive
memory locations.

Copies obtainable from NASA, Washington

I. Turner, Don N.
II. Huff, Vearl N.
IIT. NASA TN D-1092

(Initial NASA distribution:

49, Simulators and
computers.

NASA

NASA TN D-1092 )

National Aeronautics and Space Administration.

AN INPUT ROUTINE USING ARITHMETIC STATE-
MENTS FOR THE IBM 704 DIGITAL COMPUTER.
Don N. Turner and Vearl N. Huff. September 1961.
4. OTS price, $1.25.

(NASA TECHNICAL NOTE D-1092)

An input routine has been designed for use with
FORTRAN or SAP coded programs which are to be
executed on an IBM 704 digital computer. All input

. to be processed by the routine is punched on IBM
cards as declarative statements of the arithmetic type
resembling the FORTRAN language. The routine is
850 words in length. It is capable of loading fixed- or
floating-point numbers, octal numbers, and alpha-
betic words, and of performing simple arithmetic as
indicated on input cards. Provisions have been made
for rapid loading of arrays of numbers in consecutive
memory locations.

“*" Copies obtainable from NASA, Washington

I. Turner, Don N.
II. Huff, Vearl N.
IO0. NASA TN D-1092

(Initial NASA distribution:

49, Simulators and
computers.

NASA

NASA TN D-1092 )

National Aeronautics and Space Administration.

AN INPUT ROUTINE USING ARITHMETIC STATE-
MENTS FOR THE IBM 704 DIGITAL COMPUTER.
Don N. Turner and Vearl N. Huff. September 1961.
47p. OTS price, $1.25.

(NASA TECHNICAL NOTE D-1092)

An input routine has been designed for use with
FORTRAN or SAP coded programs which are to be
executed on an IBM 704 digital computer. All input

. to be processed by the routine is punched on IBM

cards as declarative statements of the arithmetic type
resembling the FORTRAN language. The routine is
850 words in length. It is capable of loading fixed- or
floating-point numbers, octal numbers, and alpha-
betic words, and of performing simple arithmetic as
indicated on input cards. Provisions have been made
for rapid loading of arrays of numbers in consecutive
memory locations.

Copies obtainable from NASA, Washington

I. Turner, Don N.
II. Huff, Vearl N.
II. NASA TN D-1092

(Initial NASA distribution:

49, Simulators and
computers.

NASA




